[PDF] Limites et asymptotes - Free



Previous PDF Next PDF







Limites infinies, limites à l’infini

Si g a une limite quand x tend vers l’infini, alors f en a une aussi et on a lim ( ) lim ( ) xx f x g x of of Une proposition analogue est valide pour x tendant vers moins l’infini Exemple : On cherche 2 lim x 4 x of x Pour x positif, x x x 4 ( 2)( 2) et pour xz4, on a 2 ( ) ( ) 4 x f x g x x où 1 2 gx x lim ( ) lim ( ) 0 Donc xx f x



Limites et asymptotes - Free

2- Limite finie en l'infini Lorsque f (x) peut être rendu aussi proche qu'on le désire d'un réel L pour x suffisamment grand, on dit que f(x) tend vers L lorsque x tend vers +∞ On écrit alors lim x ∞ f x =L On définit de manière similaire lim x −∞ f x =L Résultat à retenir Pour tout entier n supérieur à 0, lim



Limites - ac-rouenfr

x tend vers a, le point M se rapproche du point A, a la limite la corde devient la tangente en A a la courbe repr´esentant f Lorsque lim x→a f(x)−f(a) x−a est un r´eel, c’est la pente de la tangente en A(a,f(a)) a C f cin´ematique Si f(t) d´ecrit le d´eplace d’un mobile le long d’un axe au cours du temps t alors f0(a



LIMITES – EXERCICES CORRIGES

2) Si une fonction f a pour limite 0 en +∞, alors, à condition de prendre x suffisamment grand, tous les nombres réels f(x) sont de même signe 3) Si une fonction f a pour limite -1 en +∞, alors, à condition de prendre x suffisamment grand, tous les nombres réels f(x) sont de même signe Exercice n°5



Chapitre 10 : Limites et continuité des fonctions

Mathématiques ECO1 LMA 2019-2020 Exemple 2 lim x→1 1 √ x −1 = +∞, préciser l’asymptote 3 Limite à gauche Limite à droite Définition Soit I un intervalle, x 0 un élément de I qui n’est pas une extrémité de I et f une fonction



Chapter 1 Limites et Equivalents - INP Toulouse

=1pour x=0grâce à la limite précédente Exercice 2 Montrer que limx→0+ √sinx x(x2+1) =0 Numérateur et dénominateur tendent vers 0 c’est donc une forme indéterminée Mais pour xvoisin de 0 on a sinx∼xet x2 +1→1 donc sinx √ x(x2 +1) ∼ x √ x = √ x→0 L’équivalence de sinxpermet de résoudre l’indétermination 1 3 ln



LIMITES DE SUITES - pagesperso-orangefr

n) suite converge vers ℓ, ou a pour limite ℓ signifie que : pour tout réel r > 0, l’intervalle ]ℓ− r;ℓ + r[ contient tous les termes de la suite (u n) à partir d’un certain rang On note lim n→+∞ u n = ℓ Lorsqu’une suite a une limite réelle, on dit qu’elle est convergente Une suite qui n’est pas convergente est



MATHEMATIQUES : PROBLEMES ET SOLUTIONS

Created Date: 5/19/2007 7:11:42 AM



MATHEMATIQUES : PROBLEMES ET SOLUTIONS

Created Date: 3/11/2016 5:46:25 PM

[PDF] limite calcul

[PDF] limite conventionnelle d'élasticité

[PDF] limite cosinus

[PDF] limite cosinus en l'infini

[PDF] limite d une fonction ? deux variables

[PDF] Limite d'intégrale à calculer

[PDF] limite d'une fonction

[PDF] limite d'une fonction composée

[PDF] limite d'une fonction en + l'infini et -l'infini

[PDF] Limite d'une fonction racine carré

[PDF] Limite d'une suite

[PDF] limite d'une suite

[PDF] Limite d'une suite : Vraix-Faux Justifier

[PDF] Limite d'une suite définie par récurrence

[PDF] limite d'age ça

Limites et asymptotesA Limites et infiniSoit f une fonction.1- Limite infinie en l'infiniLorsque f (x) peut être rendu supérieur à tout réel positif A pour x suffisamment grand, on dit

que f (x) tend vers +∞ lorsque x tend vers +∞ . On écrit alors limx∞ fx=∞.

On définit de manière similaire : •

limx∞ fx=-∞ ( f (x) devient inférieur à - A), • limx-∞

fx=∞ ( x doit être suffisamment grand en valeur absolue mais négatif)•

limx-∞ fx=-∞. Résultats à retenir•en +∞ : pour tout entier n supérieur à 0 limx∞ xn=∞; limx∞ x=∞. •en -∞ : si n est un entier positif pair, alors limx-∞ xn=∞; mais si n est un entier positif impair, alors limx-∞ xn=-∞.

2- Limite finie en l'infiniLorsque f (x) peut être rendu aussi proche qu'on le désire d'un réel L pour x suffisamment

grand, on dit que f(x) tend vers L lorsque x tend vers +∞ . On écrit alors limx∞ fx=L.

On définit de manière similaire

limx-∞ fx=L. Résultat à retenir Pour tout entier n supérieur à 0, limx∞ 1 xn=0 et limx-∞ 1 xn=0.

Asymptote horizontaleLorsque

limx∞ fx=L ou limx-∞ fx=L, la courbe représentative de f admet la droite d'équation y = L comme asymptote horizontale; cela signifie que lorsque x tend vers +∞ ou vers -∞, la courbe se rapproche de plus en plus de la droite.3- Limite infinie en x0

Lorsque f(x) peut être rendu supérieur à tout réel positif A pour x suffisamment proche d'un

réel x0, on dit que f(x) tend vers +∞ lorsque x tend vers x0. On écrit alors limxx0 fx=∞.

On définit de façon similaire

limxx0 fx=-∞.

Résultats à retenir•sur ]0; +∞[,

limx0 1 x=∞, on écrit alors limx0+ 1 x=∞.

KB 1 sur 3

•sur ]-∞; 0[, limx0 1 x=-∞, on écrit alors limx0- 1 x=-∞.

Asymptote verticale Lorsque

limxx0 fx=∞ ou limxx0 fx=-∞, la courbe représentative de f admet la droite

d'équation x = x0 comme asymptote verticale.4- Asymptotes obliquesSoit f une fonction de courbe C dans le plan muni d'un repère.Soit D la droite d'équation y = ax + b.

La droite D est une asymptote à la coube C en +∞ si limx∞ fx-axb=0. La droite D est une asymptote à la coube C en -∞ si limx-∞ fx-axb=0.

Exemple :Soit f définie par

fx=x-3 1 x sur ℝ*.

Lorsque x tend vers +∞,

1 x tend vers 0, f(x) est donc très voisin de x - 3.

Montrons que la droite d'équation y = x - 3 est une asymptote à la courbe représentative de f.

fx-x-3=x-3 1 x-x-3=1 x. Comme limx∞ 1 x=0, on a limx∞ fx-x-3=0 et la droite d'équation y = x - 3 est bien une asymptote à la courbe représentative de f.

B Limites et opérations1- Sommeslimite de fL1L +∞-∞+∞limite de gL2±∞+∞-∞-∞limite de f+gL1+L2±∞+∞-∞???

2- Produitslimite de fL1L≠0±∞0

limite de gL2±∞±∞±∞limite de fgL1L2±∞ (règle des signes)±∞ (règle de signes)???

3- Quotientslimite de fL1L±∞L≠0±∞0

limite de gL2≠0±∞L0±∞0 limite de f/gL1 / L20±∞ (règle des signes)±∞ (règle des signes)??????

KB 2 sur 3

Remarque On a 4 formes indéterminées qui sont de la forme ∞ - ∞, 0 × ∞, ∞

∞ et 0 0.

4- Exemples d'applications1)Calculer

limx1+ -4 x-1 et limx1- -4 x-1.

Le numérateur est constant égal à - 4. Quand x tend vers 1+, le dénominateur tend vers 0+ et donc

limx1+ -4 x-1=-∞. Quand x tend vers 1-, le dénominateur tend vers 0- et donc limx1- -4 x-1=∞.

2)Calculer

limx∞ x2 -x. Comme x² et x tendent vers +∞, on a une forme indéterminée du type ∞ - ∞. On transforme l'expression x² - x en mettant x² en facteur. x2-x=x21-x x2=x²1 -1 x. Or limx∞ x2 =∞ et limx∞ 1-1 x=1. On en déduit, en utilisant la règle du produit des limites que limx∞ x2 -x=∞.

3)Calculer

limx∞ 2x-3 x1. Comme 2x - 3 et x + 1 tendent vers +∞, on a une forme indéterminée du type ∞. On effectue la transformation suivante : 2x-3 x1= x2-3 x x11 x 2-3 x

11

x. Or limx∞ 2-3 x=2 et limx∞

11

x=1 .

On en déduit que

limx∞ 2x-3 x1=2 1 =2.

KB 3 sur 3

quotesdbs_dbs47.pdfusesText_47