[PDF] LIMITES DES FONCTIONS (Partie 1)



Previous PDF Next PDF







I - LIMITE D’UNE FONCTION

I - LIMITE D’UNE FONCTION But : donner un sens précis à la notion de limite ℓ d’une fonction lim x→a f(x) = ℓ où a,ℓ ∈ ℝ On rappelle que ℝ= ℝ∪ {−∞,+∞} Donc, ici, a et ℓ sont finis ou infinis Notion de voisinage : on appelle voisinage de



LIMITE DUNE FONCTION - AlloSchool

LIMITE D’UNE FONCTION Prof/ATMANI NAJIB Année Scolaire 2018-2019 Semestre1 2 Propriété :Si et sont confondues sur un intervalle pointé de centre 0 et si



Chapitre 8 : LIMITES dune FONCTION

Chapitre 8 : LIMITES d’une FONCTION 3) Limite d’une fonction composée Fonction composée : rappel Onconsidèredeuxfonctionsf etg Onnote ulafonctioncomposée: (x) = f g ) Rappel: ilfautvérifierque,pourtoutx deD g, ona: g(x) ∈D f Exemple: u(x) = s x2 −4x +3 x −2 TS, lycée les eaux claires



Limite d’une fonction Approche intuitive de la notion de limite

Limite d’une fonction Approche intuitive de la notion de limite Dans ce chapitre, nous avons besoin d’un outil mathématique appelé « Limite » qui est une notion fort nécessaire pour la compréhension et la pratique des mathématiques Pour introduire cette notion, je commence par un exemple géométrique :



Limite d’une fonction réele de variable réelle

Remarque 2 9 Il existe des fonctions qui n’ont pas de limite en a; c’est le cas de la fonction inverse, qui n’a pas de limite en 0 2 4 Limite d’une fonction à droite (ou à gauche) La fonction inverse n’a pas de limite en 0, car si x s’approche de 0, les nombres 1 x ne rentrent pas dans le cadre de la définition2 7



LIMITES DES FONCTIONS (Partie 1)

I Limite d'une fonction à l'infini 1) Limite finie à l'infini Intuitivement : On dit que la fonction admet pour limite # en +∞ si (’) est aussi proche de # que l’on veut pourvu que ’ soit suffisamment grand Exemple : La fonction définie par (’)=2+ +, a pour limite 2 lorsque x tend vers +∞



Limites de fonctions

B Approche d'une limite infinie en l'infini On considère la fonction définie sur par Question 1 [Solution n°2 p 30] D'après la courbe représentative de la fonction, conjecturez sa limite en On se souvient de la définition rigoureuse d'une limite infinie d'une suite - p 39



Limites et continuité de fonctions

2 Limites d'une fonction Limite en l'in ni, limite en un réel Limite à gauche, limite à droite Lien entre fonctions et suites Opérations sur les limites Branches in nies Ordre et limites 3 Continuité d'une fonction Continuité en un point Prolongement par continuité Opérations Continuité sur un intervalle 4 Fonctions trigonométriques



D´eveloppements limit´es d’une fonction `a deux variables

D´eveloppements limit´es d’une fonction a deux variables 1 D´eveloppements limit´es d’une fonction `a deux variables Ici, on va traiter seulement le cas de l’ordre 1 et le cas de l’ordre 2 au voisinage du point (a,b)

[PDF] limite d'une fonction ? deux variables

[PDF] limite d'une fonction complexe

[PDF] limite d'une fonction composée exercice corrigé

[PDF] limite d'une fonction exercice et corrige

[PDF] limite d'une fonction irrationnelle

[PDF] limite d'une fonction rationnelle en un réel

[PDF] limite d'une somme de suite

[PDF] limite d'une suite 1ere s

[PDF] limite d'une suite arithmético géométrique

[PDF] limite d'une suite arithmético-géométrique

[PDF] limite d'une suite arithmétique

[PDF] limite d'une suite convergente

[PDF] limite d'une suite definition

[PDF] limite d'une suite exercices corrigés

[PDF] limite d'une suite géométrique

1

LIMITES DES FONCTIONS - Chapitre 1/2

Tout le cours en vidéo : https://youtu.be/YPwJyYDsmxM

Partie 1 : Limite d'une fonction à l'infini

1) Limite infinie en ∞

Définition :

On dit que la fonction admet pour limite +∞ en +∞, si ()est aussi grand que l'on veut pourvu que soit suffisamment grand. Remarque : On a une définition analogue en -∞.

Exemple :

La fonction définie par

a pour limite +∞ lorsque tend vers +∞.

On a par exemple :

100
=100 =10000 1000
=1000 =1000000 Les valeurs de la fonction deviennent aussi grandes que l'on veut dès que est suffisamment grand.

Si on prend un intervalle

quelconque, toutes les valeurs de la fonction appartiennent à cet intervalle dès que est suffisamment grand.

Définitions : - On dit que la fonction admet pour limite +∞ en +∞ si tout intervalle

, réel, contient toutes les valeurs de () dès que est suffisamment grand et on

note : lim - On dit que la fonction admet pour limite -∞ en +∞ si tout intervalle , réel, contient toutes les valeurs de () dès que est suffisamment grand et on note : lim

Remarques :

- Une fonction qui tend vers +∞ lorsque tend vers +∞ n'est pas nécessairement croissante. Par exemple : 2 - Il existe des fonctions qui ne possèdent pas de limite infinie. C'est le cas des fonctions sinusoïdales.

2) Limite finie en ∞

Définition :

On dit que la fonction admet pour limite en +∞,

si ()est aussi proche de que l'on veut, pourvu que soit suffisamment grand et on

note : lim Remarque : On a une définition analogue en -∞.

Exemple :

La fonction définie par

=2+ a pour limite 2 lorsque tend vers +∞.

On a par exemple :

100
=2+ =2,01 10000
=2+ =2,0001 Les valeurs de la fonction se resserrent autour de 2 dès que est suffisamment grand. La courbe de la fonction "se rapproche" de la droite d'équation =2 sans jamais la toucher. 3 Si on prend un intervalle ouvert quelconque contenant 2, toutes les valeurs de la fonction appartiennent à cet intervalle dès que est suffisamment grand.

Définition : Si lim

=, la droite d'équation = est appelée asymptote horizontale

à la courbe de la fonction en +∞.

Définition :

On dit que la fonction admet pour limite en +∞ si tout intervalle ouvert contenant

contient toutes les valeurs de () dès que est suffisamment grand et on note : lim Remarque : On a des définitions analogues en -∞.

3) Limites des fonctions de référence

Propriétés :

- lim =+∞, lim - lim =+∞, lim - lim =+∞, lim =+∞ (pour pair) - lim =+∞, lim =-∞ (pour impair) - lim - lim 1 =0, lim 1 =0 - lim =+∞, lim =0

Partie 2 : Limite d'une fonction en un réel A

1) Définition

Définition :

On dit que la fonction admet pour limite +∞ en ,

si () est aussi grand que l'on veut pourvu que soit suffisamment proche de .

4

Exemple :

La fonction définie par

1

3-

+1 a pour limite +∞ lorsque tend vers 3.

On a par exemple :

2,99 1

3-2,99

+1=101

2,9999

1

3-2,9999

+1=10001

Les valeurs de la fonction deviennent aussi

grandes que l'on veut dès que est suffisamment proche de 3.

La courbe de la fonction "se rapproche" de la

droite d'équation =3 sans jamais la toucher.

Si on prend un intervalle

quelconque, toutes les valeurs de la fonction appartiennent à cet intervalle dès que est suffisamment proche de 3.

Définition : Si : lim

=+∞ ou lim =-∞, la droite d'équation = est appelée asymptote verticale à la courbe de la fonction .

Définitions : - On dit que la fonction admet pour limite +∞ en si tout intervalle

, réel, contient toutes les valeurs de ()dès que est suffisamment proche de

et on note : lim - On dit que la fonction admet pour limite -∞ en si tout intervalle , réel,

contient toutes les valeurs de ()dès que est suffisamment proche de et on

note : lim 5

2) Limite à gauche, limite à droite :

Exemple :

Considérons la fonction inverse définie sur ℝ par La fonction admet des limites différentes en 0 selon que : >0 ou <0. Si >0 : Lorsque tend vers 0, () tend vers +∞ et on note : lim =+∞ou lim

On parle de limite à droite de 0

Si <0 : Lorsque tend vers 0, () tend vers -∞ et on note : lim =-∞ ou lim

On parle de limite à gauche de 0.

Méthode : Déterminer graphiquement des limites d'une fonction

Vidéo https://youtu.be/9nEJCL3s2eU

On donne ci-dessous la représentation graphique de la fonction . a) Lire graphiquement les limites en -∞, en +∞, en -4 et en 5. b) Compléter alors le tableau de variations de . -∞-425+∞ 6

Correction

a) lim =5 lim =5 La courbe de admet une asymptote horizontale d'équation =5 en -∞ et +∞. lim La courbe de admet une asymptote verticale d'équation =-4. lim =+∞ et lim La courbe de admet une asymptote verticale d'équation =5. 2)

Partie 3 : Opérations sur les limites

1) Utiliser les propriétés des opérations sur les limites

peut désigner +∞, -∞ ou un nombre réel. SOMME lim "→0 lim "→0 lim "→0 F.I.* * Forme indéterminée : On ne peut pas prévoir la limite éventuelle. -∞-425+∞ +∞+∞ +∞5

56-∞

7 PRODUIT ∞ désigne +∞ ou -∞ lim "→0 ∞ 0 lim "→0 lim "→0 F.I. On applique la règle des signes pour déterminer si le produit est +∞ ou -∞. QUOTIENT ∞ désigne +∞ ou -∞ lim "→0 ≠0 0 lim "→0 ′≠0

0 ∞ ∞

0 lim "→0 ∞ 0 ∞

F.I. F.I.

On applique la règle des signes pour déterminer si le quotient est +∞ ou -∞. Méthode : Calculer la limite d'une fonction à l'aide des formules d'opération

Vidéo https://youtu.be/at6pFx-Umfs

Déterminer les limites suivantes : a)lim

-5

3+

b) lim

1-2

-3

Correction

a) lim -5

3+

L lim -5=-∞ lim =+∞lim

3+

Comme limite d'un produit : lim

-5

3+

b) lim

1-2

-3 lim

1-2=1-2×3=-5

lim -3=0

Une limite de la forme "

» est égale à " ∞ ».

Donc, d'après la règle des signes, une limite de la forme "

» est égale à " +∞ ».

D'où, comme limite d'un quotient : lim

1-2

-3 8

2) Cas des formes indéterminée

Comme pour les suites, on rappelle que :

Les quatre formes indéterminées sont, par abus d'écriture : ∞-∞0×∞ Méthode : Lever une forme indéterminée à l'aide de factorisations (1)

Vidéo https://youtu.be/4NQbGdXThrk

Calculer : lim

-3 +2 -6+1

Correction

lim -3 +2 -6+1=? • L lim -3 lim

2

On reconnait une forme indéterminée du type "∞-∞". • Levons l'indétermination en factorisant par le monôme de plus haut degré : -3quotesdbs_dbs47.pdfusesText_47