[PDF] Limites et comportement asymptotique Exercices corrigés



Previous PDF Next PDF







LIMITES – EXERCICES CORRIGES

2) En déduire les limites de f lorsque x tend vers +∞ et lorsque x tend vers −∞ Exercice n°13 Déterminer, à l'aide des théorèmes de comparaison, les limites en +∞ et en −∞ de chacune des fonctions f suivantes (si elles existent): 1) 1cos x fx x + = 2) 2 sin 1 x x fx x = +; Exercice n°14 On veut trouver la limite en +∞ de



Limites et comportement asymptotique Exercices corrigés

D’après le théorème sur les limites des fonctions rationnelles en l’infini, Il résulte de cette étude de limite que la courbe représentative de la fonction asymptote horizontale d’équation Remarque : La courbe représentative de cette fonction admet également une asymptote verticale d’équation



I Exercices - Lycée Jean Vilar

de la 1`ere S `a la TS Chapitre 2 : Limites et asymptotes I Exercices 1 Limites sans ind´etermination Calculer les limites des fonctions suivantes, et pr´eciser lorsque la courbe repr´esentative de f (not´ee (Cf)) admet une asymptote horizontale ou verticale 1 f(x) = x2 +2x− 3 en +∞ 2 f(x) = x3 −6x2 +1 en −∞ 3 f(x) = 1 (x+1



Fonctions rationnelles : exercices

Fonctions rationnelles : exercices Exercice 1 Soit f la fonction numérique définie par 1 ( ) x x f x On note (C) sa courbe représentative dans le repère orthonormé R(O,i, j) ⃗ ⃗ 1°) Etudier les variations de f 2 °) a) Montrer que pour tout x 1 1 1 ( ) 1 x f x b) Montrer que (C) est l’image de l’hyperbole x H y 1



Limites de fonctions - alloschoolcom

Exercices 15 octobre 2013 Limites de fonctions Opérations sur les limites ExerciceI Fonctions polynômes Déterminer les limites en +∞ et −∞ des polynômes suivants : 1) P(x) = 5x3 −3x +1 2) Q(x) = −2x4 + x2 +3 ExerciceII Fonction rationnelles Déterminer l’ensemble de définition des fonctions rationne lles suivantes puis déterminer



Limites de fonctions - Exo7 : Cours et exercices de

Limites de fonctions 1 Théorie Exercice 1 1 Montrer que toute fonction périodique et non constante n’admet pas de limite en +¥ 2 Montrer que toute fonction croissante et majorée admet une limite finie en +¥ Indication H Correction H Vidéo [000612] Exercice 2 1 Démontrer que lim x0 p 1+x p 1 x x =1 2 Soient m;n des entiers positifs



Limites de fonctions

Exercices 15 octobre 2013 Limites de fonctions Opérations sur les limites ExerciceI Fonctions polynômes Déterminer les limites en +∞ et −∞ des polynômes suivants : 1) P(x) = 5x3 −3x +1 2) Q(x) = −2x4 + x2 +3 ExerciceII Fonction rationnelles Déterminer l’ensemble de définition des fonctions rationne lles suivantes puis déterminer



FONCTIONS RATIONNELLES - maths et tiques

3 sur 4 Yvan Monka – Académie de Strasbourg – www maths-et-tiques II Variations des fonctions rationnelles Méthode : Étudier les variations d’une fonction rationnelle



FONCTIONS POLYNÔMES – FONCTIONS RATIONNELLES

Fonctions polynômes Page 3 sur 4 Adama Traoré Professeur Lycée Technique Exercice 13 : I)-Soit le polynôme f (x) =x4 +3x3 −5x2 −13 x +6 1°) Calculer f (2) et f (−3) 2°) En déduire une factorisation de f (x) 3°) Trouvez les zéros de f et leur ordre de multiplicité II)- On donne P(x) =x3 −7x2 +16 x −12

[PDF] Limites de fonctions svp

[PDF] limites de fonctions terminale s

[PDF] limites de fonctions terminale s exercices

[PDF] Limites de l'organisme ? l'effort -VO2max

[PDF] limites de l'étude mémoire

[PDF] limites de l'innovation

[PDF] limites de l'onu

[PDF] limites de la croissance économique cours

[PDF] Limites de la démocratie

[PDF] limites de la discrimination positive

[PDF] Limites de la puissance francaise

[PDF] Limites de plaques rt localisation des volcans er seismes et conclusion

[PDF] Limites de suite quand n tend vers +oo

[PDF] Limites de suites

[PDF] Limites de suites

1 Sont abordés dans cette fiche : Exercice 1 : détermination graphique e équation courbe (asymptote verticale et asymptote horizontale) Exercice 2 : étude de limites, asymptotes verticales et horizontales Exercice 3 : étude de limites de fonctions composées, formes indéterminées, expression conjuguée, asymptotes horizontales Exercice 4 : Exercice 5 : On a tracé ci-dessous en vert , la courbe représentative dfonction . Déterminer graphiquement , , puis une équation de chacune des asymptotes à .

Limites et comportement asymptotique Exercices corrigés

Exercice 1 (2 questions) Niveau : facile

0 PROF: ATMANI NAJIB

2 1) Ci-dessous est tracée en vert . -- -- Rappel : Soient un intervalle, une fonction définie (au moins) sur et un réel tel que . Continuité en un point : est continue en si et seulement si admet une limite en égale à : -à-dire et en particulier Continuité sur un intervalle : est continue sur si est continue en tout point de . Graphiquement, on lit : et donc -. et Ainsi, donc -.

PROF: ATMANI NAJIB

3 Remarque Notation : et 2) Rappel : Asymptotes à une courbe Asymptote horizontale : Soit un réel. Si Alors la courbe représentative de admet une asymptote horizontale en . Si Alors la courbe représentative de admet une asymptote horizontale en . Asymptote verticale : Si ou si ou si Alors la courbe représentative de admet une asymptote verticale . Asymptote oblique : Soit un réel non nul et un réel. Si - ou si - Alors la courbe représentative de admet une asymptote oblique . Graphiquement, on lit : Donc la droite - est asymptote verticale à .

désigne la limite à gauche de en désigne la limite à droite de en PROF: ATMANI NAJIB

Limites et comportement asymptotique Exercices corrigés © SOS DEVOIRS CORRIGES (marque déposée)

4 Par ailleurs, Donc la droite - est asymptote verticale à Enfin, Donc la droite est asymptote horizontale à en et en .

0 0 tend vers - par valeurs inférieures tend vers - par valeurs supérieures PROF: ATMANI NAJIB

Limites et comportement asymptotique Exercices corrigés © SOS DEVOIRS CORRIGES (marque déposée)

5 Déterminer les limites suivantes et . - -- (- -(- Remarque préalable : Le verbe " déduire » signifie " partir de propositions prises pour prémisses 1) Déterminons - -- , par quotient, - On en déduit que la courbe représentative de la fonction - admet une asymptote verticale - (représentée ci-dessous en bleu).

Exercice 2 (2 questions) Niveau : facile

0 - Si -, alors : PROF: ATMANI NAJIB

6 Remarque : -- - Cette étude de limite aurait également permis la courbe représentative de la fonction - admet une asymptote verticale - (représentée ci-dessus en bleu). Autre remarque : La courbe représentative de la fonction - admet également une asymptote horizontale (représentée ci-dessous en rose) - en et en . En effet, - -- - --

0 PROF: ATMANI NAJIB

Limites et comportement asymptotique Exercices corrigés © SOS DEVOIRS CORRIGES (marque déposée)

7 2) Déterminons - Et , par quotient, Donc la courbe représentative de la fonction admet une asymptote verticale . Remarque : On aurait asymptote verticale à la courbe représentative de la fonction en montrant que : Autre remarque : La courbe représentative de cette fonction admet également une asymptote horizontale en et en . En effet, on a : Rappel : Soient , , et . La limite en définie par : -- est égale à la limite en du quotient de ses monômes de plus haut degré .

0 PROF: ATMANI NAJIB

8 3) Déterminons - - , par quotient, Et - Donc, par somme, - On en déduit que la courbe représentative de la fonction - admet une asymptote verticale . Remarque : On pouvait également montrer en étudiant - Autre remarque : La courbe représentative de cette fonction admet également une asymptote oblique - au voisinage de et de . En effet, ----- ----- 4) Déterminons - --- Donc , la courbe représentative de la fonction -, admet une asymptote horizontale - au voisinage de . Remarques : - est une asymptote horizontale à en . . PROF: ATMANI NAJIB

9 5) Déterminons (- (-(- Il résulte de cette étude de limite que la courbe représentative de la fonction -- asymptote horizontale -. Remarque : -. 6) Déterminons -(- -(--(- Donc la courbe représentative de la fonction --- pas horizontale. Remarque : La courbe représentative de cette fonction admet en revanche deux asymptotes verticales respective - et --.

Asymptote verticale -

Asymptote verticale -

Asymptote oblique -

-- Courbe représentative de la fonction PROF: ATMANI NAJIB

10 Déterminer la limite de chacune des fonctions suivantes puis en déduire si la courbe représentative de la fonction admet une asymptote. -((- -- Rappel : Limite d fonction composée de deux fonctions Soit une fonction définie sur un intervalle , soit une fonction définie sur un intervalle , telle que . La fonction définie sur telle que (ou ) est la fonction composée de la fonction suivie de la fonction . , et désignent chacun soit un réel, soit , soit . Si Et si Alors 1) Déterminons est la composée, définie sur , de la fonction suivie de la fonction . Et

Exercice 3 (2 questions) Niveau : moyen PROF: ATMANI NAJIB

11 , par composition, Et , par composition, Donc, par différence, on aboutit à une forme indéterminée de la forme ; en effet : . Pour cela, on la multiplie par son expression conjuguée, afin de mettre en évidence la forme factorisée de ((. est dite " » de . Or, d , par somme, Donc, par quotient, - PROF: ATMANI NAJIB

12 On en déduit que la courbe représentative de la fonction admet une asymptote horizontale - au voisinage de . 2) Déterminons -((- -((--((- , par composition, -((-- Par conséquent, la courbe représentative de la fonction -((- admet une asymptote horizontale - au voisinage de . Remarque : On peut également montrer que la courbe représentative de la fonction -((- admet une - au voisinage de . 3) Déterminons -- - , par composition, - - , par composition, - Donc on aboutit à une forme indéterminée : -- PROF: ATMANI NAJIB

13 n --. Pour cela, on la multiplie par son expression conjuguée. -------- -------- ----- - Et - , par somme, -- Donc -- Par conséquent, la courbe représentative de la fonction -- dmet pas asymptote horizontale au voisinage de . Rappel : Formes indéterminées Les cas de formes indéterminées () nécessitent une étude particulière. Ces cas sont, pour les opérations élémentaires ( ; ; ; ), au nombre de 4 et de la forme : - -- PROF: ATMANI NAJIB

14 Soit la fonction définie sur par : -( 1) Etudier les limites de aux bornes de son ensemble de définition. En déduire les asymptotes éventuelles. 2) Montrer que , la courbe représentative de comme asymptote oblique. 3) Tracer et ses asymptotes afin de contrôler les résultats obtenus aux questions précédentes. Soit la fonction définie sur par : -( 1) Etudions les limites de aux bornes de son ensemble de définition. On a : , , et . Etude en : , par composition, ((

Exercice 4 (4 questions) Niveau : facile PROF: ATMANI NAJIB

15 , par quotient, -(-- -(- Donc, par somme, -( Donc , la courbe représentative de , admet pas horizontale au voisinage de Etude en : - , par composition, ((- , par quotient, -(- -( Donc, par somme, -( Donc , la courbe représentative de , admet la droite comme asymptote verticale. PROF: ATMANI NAJIB

16 Etude en : - , par composition, ((- , par quotient, -(- -( Donc, par somme, -( Donc , la courbe représentative de , admet la droite comme asymptote verticale. (résultat déjà obtenu ci-dessus) Etude en : , par somme, , par composition, (( PROF: ATMANI NAJIB

17 , par quotient, -(-- -(- Donc, par somme, -( Donc , la courbe représentative de , admet pas horizontale au voisinage de 2) Montrons que comme asymptote oblique. Pour tout , --( -(- Donc - Par conséquent, la droite est asymptote oblique à au voisinage de . Remarque : On peut également montrer que la droite est asymptote oblique à au voisinage de PROF: ATMANI NAJIB

18 3) Traçons (en vert) et ses asymptotes. -dessus, on constate que les résultats obtenus aux questions précédentes sont conformes. Soit la fonction définie sur - par : (- On note sa courbe représentative dans un repère orthonormal . 1) Déterminer les réels , et tels que, pour tout réel de , - 2) Déterminer les limites de aux bornes de . En déduire les éventuelles asymptotes à parallèles aux axes du repère. 3) Montrer que Soit la fonction définie sur - par : (-

Exercice 5 (5 questions) Niveau : moyen

0 PROF: ATMANI NAJIB

19 On note sa courbe représentative dans un repère orthonormal . 1) Déterminons les réels , et tels que, pour tout réel de , - Pour tout réel de , -----(----(-- (--- Ainsi, on doit obtenir : (---(- Par identification des coefficients (uniques) des monômes du numérateur, on a : -- Résolvons ce système : --------- -- Donc, pour tout réel de , - 2) Déterminons les limites de aux bornes de déduire les éventuelles asymptotes à parallèles aux axes du repère. Remarque : sont les asymptotes horizontales et verticales. Une asymptote horizontale est par des abscisses ; une asymptote verticale est des ordonnées. : - PROF: ATMANI NAJIB

20 Etudions la limite de en : - , par quotient, -- Donc, par somme, Etudions la limite de en - et en - : -- -- , par quotient, - - Donc, par somme, Par conséquent, - Etudions la limite de en : - PROF: ATMANI NAJIB

21 , par quotient, -- Donc, par somme, 3) Montrer que de , - Ainsi, pour tout réel de , -- Nous avons en outre établi à la question 2) que : -- Donc - Par conséquent au voisinage de . Remarque : On a de surcroît : -- -à-dire que au voisinage de . PROF: ATMANI NAJIB

quotesdbs_dbs47.pdfusesText_47