[PDF] I Exercices - Lycée Jean Vilar



Previous PDF Next PDF







LIMITES – EXERCICES CORRIGES

2) En déduire les limites de f lorsque x tend vers +∞ et lorsque x tend vers −∞ Exercice n°13 Déterminer, à l'aide des théorèmes de comparaison, les limites en +∞ et en −∞ de chacune des fonctions f suivantes (si elles existent): 1) 1cos x fx x + = 2) 2 sin 1 x x fx x = +; Exercice n°14 On veut trouver la limite en +∞ de



Limites et comportement asymptotique Exercices corrigés

D’après le théorème sur les limites des fonctions rationnelles en l’infini, Il résulte de cette étude de limite que la courbe représentative de la fonction asymptote horizontale d’équation Remarque : La courbe représentative de cette fonction admet également une asymptote verticale d’équation



I Exercices - Lycée Jean Vilar

de la 1`ere S `a la TS Chapitre 2 : Limites et asymptotes I Exercices 1 Limites sans ind´etermination Calculer les limites des fonctions suivantes, et pr´eciser lorsque la courbe repr´esentative de f (not´ee (Cf)) admet une asymptote horizontale ou verticale 1 f(x) = x2 +2x− 3 en +∞ 2 f(x) = x3 −6x2 +1 en −∞ 3 f(x) = 1 (x+1



Fonctions rationnelles : exercices

Fonctions rationnelles : exercices Exercice 1 Soit f la fonction numérique définie par 1 ( ) x x f x On note (C) sa courbe représentative dans le repère orthonormé R(O,i, j) ⃗ ⃗ 1°) Etudier les variations de f 2 °) a) Montrer que pour tout x 1 1 1 ( ) 1 x f x b) Montrer que (C) est l’image de l’hyperbole x H y 1



Limites de fonctions - alloschoolcom

Exercices 15 octobre 2013 Limites de fonctions Opérations sur les limites ExerciceI Fonctions polynômes Déterminer les limites en +∞ et −∞ des polynômes suivants : 1) P(x) = 5x3 −3x +1 2) Q(x) = −2x4 + x2 +3 ExerciceII Fonction rationnelles Déterminer l’ensemble de définition des fonctions rationne lles suivantes puis déterminer



Limites de fonctions - Exo7 : Cours et exercices de

Limites de fonctions 1 Théorie Exercice 1 1 Montrer que toute fonction périodique et non constante n’admet pas de limite en +¥ 2 Montrer que toute fonction croissante et majorée admet une limite finie en +¥ Indication H Correction H Vidéo [000612] Exercice 2 1 Démontrer que lim x0 p 1+x p 1 x x =1 2 Soient m;n des entiers positifs



Limites de fonctions

Exercices 15 octobre 2013 Limites de fonctions Opérations sur les limites ExerciceI Fonctions polynômes Déterminer les limites en +∞ et −∞ des polynômes suivants : 1) P(x) = 5x3 −3x +1 2) Q(x) = −2x4 + x2 +3 ExerciceII Fonction rationnelles Déterminer l’ensemble de définition des fonctions rationne lles suivantes puis déterminer



FONCTIONS RATIONNELLES - maths et tiques

3 sur 4 Yvan Monka – Académie de Strasbourg – www maths-et-tiques II Variations des fonctions rationnelles Méthode : Étudier les variations d’une fonction rationnelle



FONCTIONS POLYNÔMES – FONCTIONS RATIONNELLES

Fonctions polynômes Page 3 sur 4 Adama Traoré Professeur Lycée Technique Exercice 13 : I)-Soit le polynôme f (x) =x4 +3x3 −5x2 −13 x +6 1°) Calculer f (2) et f (−3) 2°) En déduire une factorisation de f (x) 3°) Trouvez les zéros de f et leur ordre de multiplicité II)- On donne P(x) =x3 −7x2 +16 x −12

[PDF] Limites de fonctions svp

[PDF] limites de fonctions terminale s

[PDF] limites de fonctions terminale s exercices

[PDF] Limites de l'organisme ? l'effort -VO2max

[PDF] limites de l'étude mémoire

[PDF] limites de l'innovation

[PDF] limites de l'onu

[PDF] limites de la croissance économique cours

[PDF] Limites de la démocratie

[PDF] limites de la discrimination positive

[PDF] Limites de la puissance francaise

[PDF] Limites de plaques rt localisation des volcans er seismes et conclusion

[PDF] Limites de suite quand n tend vers +oo

[PDF] Limites de suites

[PDF] Limites de suites

de la 1`ereS `a la TS. Chapitre 2 : Limites et asymptotes

I Exercices

1 Limites sans ind´etermination

Calculer les limites des fonctions suivantes, et pr´eciserlorsque la courbe repr´esentative def(not´ee (Cf)) admet une asymptote horizontale ou verticale.

1.f(x) =x2+ 2x-3 en +∞.

2.f(x) =x3-6x2+ 1 en-∞.

3.f(x) =1

(x+ 1)2en +∞.

4.f(x) =-⎷

x+1xen +∞.

5.f(x) = (-x+ 3)5en +∞.

6.f(x) = (-x+ 3)5en-∞.

7.f(x) = (4-2x)2en +∞.

8.f(x) =-5⎷

x2-1 en-∞.

9.f(x) =x2-3x+ 1 en 2.

10.f(x) =-3

⎷2-xen 2 par valeurs inf´erieures.

11.f(x) =2x-3

x-1en 1 par valeurs inf´erieures.

12.f(x) =2x-3

x-1en 1 par valeurs sup´erieures.

13.f(x) =5

4-x2en-2 par valeurs inf´erieures.

14.f(x) =5

4-x2en-2 par valeurs sup´erieures.

R´eponses

2 Limite en l"infini d"un polynˆome ou d"une fraction rationnelle

Calculer les limites des fonctions suivantes, et pr´eciserlorsque la courbe repr´esentative def(not´ee (Cf)) admet une asymptote horizontale.

1.f(x) =x3-2x+ 3, en +∞.

2.f(x) =x+ 3

2x-1en-∞.

3.f(x) =x4+xen-∞.

4.f(x) =x2-2

2x+ 3en-∞.

5.f(x) =2x-5

x+x2en +∞.

6.f(x) =4-2x4

x2(x+ 1)2en-∞.Aide

7.f(x) =(3x+ 1)2(2x-3)3en +∞.R´eponses

L.BILLOT 1DDL

de la 1`ereS `a la TS. Chapitre 2 : Limites et asymptotes

3 Limites ind´etermin´ees

Pour chaque limite il faut trouver la bonne m´ethode. C"est difficile au d´ebut, puis avec l"exp´erience ....

Calculer les limites suivantes

1. lim

x→+∞x+ sinx.

2. lim

x→+∞sinx x.

3. lim

x→+∞⎷ x-3-⎷x+ 1.

4. lim

x→0cosx-1 x.

5. lim

x→0⎷ x+ 1-1 x.

6. lim

x→+∞⎷ x2-1-2x.7. lim x→-∞⎷

2x2-5 + 2x.

8. lim

x→32x2-5x-3 x2-9.

9. lim

x→0sinx x.

10. lim

x→+∞3x-5

4 + sinx.

11. lim

x→-∞x2-5cosx. Aide

R´eponses

4 Asymptotes obliques

1. On consid`ere la fonction d´efinie surR-{-2;2}par :f(x) =2x3-x2-8x+ 7

x2-4, et on appelle (Cf) sa courbe repr´esentative dans un rep`ere du plan. (a) Montrer que la droite (Δ) d"´equationy= 2x-1 est asymptote `a la courbe en (b) ´Etudier les positions relatives de (Cf) et de (Δ).

2. On consid`ere la fonctionfd´efinie surR- {-2}parf(x) =x2-x-3

x+ 2. On note (Cf) sa courbe. (a) D´eterminer des r´eelsa, betctels que :f(x) =ax+b+c x+ 2. (b) En d´eduire que (Cf) admet une asymptote en-∞et donner l"´equation de cette asymptote.

3. On donne la fonctionfd´efinie sur ]- ∞;0]?[4;+∞[ par :f(x) =⎷

x2-4x. Montrer que la droite d"´equationy=x-2 est asymptote `a la courbe repr´esentative defen +∞

4. (a) Montrer que la courbe repr´esentative de la fonctiong, d´efinie parg(x) =x3+ 4

x2 admet une asymptote oblique en +∞. (b) D´eterminer sur quel ensemble l"´ecart entre la courbe et l"asymptote est inf´erieur `a un centi`eme d"unit´e. Aide

R´eponses

L.BILLOT 2DDL

de la 1`ereS `a la TS. Chapitre 2 : Limites et asymptotes

II Aide

2 Limite en l"infini d"un polynˆome ou d"une fraction rationnelle

Premi`ere m´ethode :

Je mets le terme de plus haut degr´e en facteur, je simplifie dans le cas d"une fraction, puis je calcule la limite.

Deuxi`eme m´ethode :

J"applique une des r`egles suivantes :

•La limite en l"infini d"un polynˆome est ´egale `a la limite deson terme de plus haut degr´e. •La limite en l"infini d"une fraction rationnelle est ´egale `a la limite du quotient de ses termes de plus haut degr´e.

Retour

3 Limites ind´etermin´ees

Quelques m´ethodes pour lever une ind´etermination : •Les r`egles de comparaison de fonctions : in´egalit´es, th´eor`eme des gendarmes. Utilisation possible : limites en l"infini d"une fonction trigo.

•L"expression conjugu´ee.Utilisation possible : limites avec des sommes ou des diff´erences contenant des ra-

cines.

•Retour `a la d´efinition du nombre d´eriv´e.Utilisation possible : limites d"un quotient en un point. (avec ´eventuellement des

diff´erences au num´erateur et au d´enominateur)

•Factorisation.Utilisation possible : limites en l"infini avec des racines,ou limites en un point de

fractions.

Aide sp´ecifique `a chaque question :

1. Comparaison.

2. Comparaison (gendarmes).

3. Expression conjugu´ee.

4. Nombre d´eriv´e.

5. Nombre d´eriv´e ou expression conjugu´ee.

6. Factorisation.

7. Factorisation. Attention, six <0,⎷

x2?=x.

8. Factorisation.

9. Nombre d´eriv´e.

10. Comparaison.

11. Comparaison.

Retour

L.BILLOT 3DDL

de la 1`ereS `a la TS. Chapitre 2 : Limites et asymptotes

4 Asymptotes obliques

Rappel de cours :

Soitfune fonction et (Cf) sa courbe repr´esentative, alors les deux propri´et´es suivantes sont ´equivalentes : •La droite (d) d"´equationy=ax+best asymptote `a (Cf) en +∞ssi lim x→+∞(f(x)-(ax+b)) = 0 •La droite (d) d"´equationy=ax+best asymptote `a (Cf) en +∞ssi il existe une fonction?telle que : f(x) =ax+b+?(x) avec limx→+∞?(x) = 0 (La fonction?repr´esente l"´ecart entre la courbe et la droite.)

Mˆeme chose si je remplace +∞par-∞.

M´ethodes :

•Si dans le texte on me donne l"´equation de l"asymptote, alors je simplifie l"expression def(x)-(ax+b), puis je calcule la limite. •Si on ne me donne pas l"´equation , j"essaie de reconnaˆıtre la formeax+b+?(x). •Pour d´eterminer les positions relatives, j"´etudie le signe de la diff´erence : f(x)-(ax+b).

Retour

L.BILLOT 4DDL

de la 1`ereS `a la TS. Chapitre 2 : Limites et asymptotes

III Correction

1 Limites sans ind´etermination

1. lim x→+∞x2= +∞ lim x→+∞2x= +∞ lim x→+∞-3 =-3??????? donc limx→+∞x2+ 2x-3 = +∞. 2. lim x→-∞x3=-∞ lim x→-∞x2= +∞donc limx→-∞-6x2=-∞ lim x→-∞1 = 1??????? donc limx→-∞x3-6x2+ 1 =-∞. 3. limx→+∞1 = 1 lim x→+∞(x+ 1)2= +∞? donc lim x→+∞1 (x+ 1)2= 0. La courbe (Cf) admet une asymptote horizontale d"´equationy= 0 en +∞. 4. limx→+∞-⎷ x=-∞ lim x→+∞1 x= 0??? donc limx→+∞-⎷ x+1x=-∞.

5. lim

x→+∞(-x+ 5) =-∞, donc limx→+∞(-x+ 3)5=-∞.

6. lim

x→-∞(-x+ 3) = +∞, donc limx→-∞(-x+ 3)5= +∞.

7. lim

x→+∞(4-2x) =-∞, donc limx→+∞(4-2x)2= +∞. 8. limx→-∞-5 =-5 lim x→-∞(x2-1) = +∞donc limx→+∞⎷ x2-1 = +∞??? donc limx→-∞-5⎷x2-1= 0. La courbe (Cf) admet une asymptote horizontale d"´equationy= 0 en-∞. 9. lim x→2x2= 4 lim x→2-3x=-6 lim x→2+ = 1??????? donc limx→2x2-3x+ 1 =-1. 10. lim x <→2-3 =-3 lim x <→22-x= 0+donc lim x <→2⎷

2-x= 0+???

donc lim x <→2-3⎷2-x=-∞. La courbe (Cf) admet une asymptote verticale d"´equationx= 2.

Retour

L.BILLOT 5DDL

de la 1`ereS `a la TS. Chapitre 2 : Limites et asymptotes

11.lim

x <→12x-3 =-1 lim x <→1x-1 = 0-??? donc lim x <→12x-3x-1= +∞. La courbe (Cf) admet une asymptote verticale d"´equationx= 1. 12. lim x >→12x-3 =-1 lim x >→1x-1 = 0+??? donc lim x >→12x-3 x-1=-∞. La courbe (Cf) admet une asymptote verticale d"´equationx= 1. 13. lim x <→-25 = 5 lim x <→-24-x2= 0-??? donc lim x <→-25

4-x2=-∞.

La courbe (Cf) admet une asymptote verticale d"´equationx=-2. 14. lim x >→-25 = 5 lim x >→-24-x2= 0+??? donc lim x >→-25

4-x2= +∞.

La courbe (Cf) admet une asymptote verticale d"´equationx=-2.

Retour

2 Limite en l"infini d"un polynˆome ou d"une fraction rationnelle

1. Premi`ere m´ethode :

f(x) =x3?quotesdbs_dbs5.pdfusesText_10