[PDF] LES FONCTIONS DE RÉFÉRENCE - Maths & tiques



Previous PDF Next PDF







GENERALITES SUR LES FONCTIONS - Free

Un repère étant choisi, on appelle représentation graphique d’une fonction f l’ensemble des points M de coordonnées ( x ; y ) lorsque x prend toutes les valeurs de D f et que y = f(x ) On dit aussi courbe représentative de la fonction f



TD2 - 1STMG2 - Fonctions affines

2 Donner le sens de ariationv des fonctions f et g 3 Dresser les tableaux de signes des fonctions f et g Exercice 6 Dans le plan muni d'un repère, on considère la droite (d) représentative de la fonction f dé nie par: f(x) = 0,3x+0,2 x-1 -0,5 0 0,5 1 1,5 2 y 0,5 (d) 1 A l'aide d'une lecture graphique, donner l'ensemble des solutions de



exercice Etudes des fonctions

Soit la fonction f définie sur R−{2}par : x 2 ax² bx c f( x) − + + = où a , b et c sont des réels On désigne par (ζf) la courbe représentative de f dans un repère orthonormé (O,i,j) Déterminer les réels a , b et c pour que: •La courbe (ζf) passe par le point A(0,-1) •La fonction f admet un extremum en 0



LES FONCTIONS DE RÉFÉRENCE - Maths & tiques

symétrique par rapport à l'axe des ordonnées 2 Fonction impaire Définitions : Une fonction f est impaire lorsque pour tout réel x de son ensemble de définition D, –x appartient à D et "(−$)=−"($) Traduction géométrique : Dans un repère orthogonal, la courbe représentative d’une fonction impaire est symétrique par rapport à



Rappel EXERCICE 3

- parallèle à la droite représentant la fonction linéaire associée ; - passant par le point de coordonnées (0 ; b) EXERCICE 1 Représenter dans ce repère ces fonctions affines : - en bleu, la fonction f: x 2x + 1 ; - en rouge, la fonction g : x –3x + 2 ; - en vert, la fonction h : x 3 2 x + 1 ; - en gris, la fonction k : x – 1 4 x



Fonctions affines Exercices corrigés

Trouver la fonction affine telle que et est une fonction affine donc, pour tout réel, , où et désignent deux réels 1- Commençons par déterminer , le taux d’accroissement de , sachant que et L’ordonnée U du point $ se lit sur l’axe vertical des ordonnées du repère



Seconde - Fonction carré

2) Représentation graphique de la fonction carré 3) Définition Dans un repère orthogonal d’origine O la représentation graphique de la fonction carré est appelé parabole de sommet O 4) Propriété Dans un repère orthogonal d’origine O la parabole représentant la fonction carré admet un axe de symétrie : L’axe des ordonnées



Exercices corrigés - AlloSchool

Exercice 1 : produit scalaire en fonction des coordonnées de vecteurs dans un repère orthonormé Exercice 2 : propriétés du produit scalaire (règles de calcul et identités remarquables) Exercice 3 : produit scalaire en fonction des normes de vecteurs Exercices 4 et 5 : orthogonalité de deux vecteurs et produit scalaire nul



1 Compléter le tableau de variation de la fonction

domaine de définition de la fonction f 2 Déterminer le non de la courbe C f f de et ses caractéristiques 3 Déterminer les coordonnées avec les axes du repère 4 Donner le tableau de variations de chaque fonction 5 Construire les courbes et C g dans le même repère O,i,j 6 Déterminer graphiquement le nombre des solutions de

[PDF] Repère du plan et vecteurs

[PDF] repère en anglais

[PDF] repere espace temps

[PDF] Repère et coordonnées

[PDF] repère et coordonnées DM MATH

[PDF] Repère et droites d'équation

[PDF] Repère et Equations

[PDF] Repère et Ordonnées (DM)

[PDF] repere et parallelogramme

[PDF] repere et vecteurs

[PDF] repere frenet demonstration

[PDF] repère géographie brevet

[PDF] repere géographique 6eme

[PDF] repere géographique 6eme 5eme 4eme

[PDF] repere géographique brevet 2017

1 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

LES FONCTIONS DE RÉFÉRENCE

Tout le cours en vidéo : https://youtu.be/DUbAkwCX8O8

Partie 1 : Fonction paire, fonction impaire

1. Fonction paire

Définition : Une fonction dont la courbe est

symétrique par rapport à l'axe des ordonnées est une fonction paire.

Remarque :

Pour une fonction paire, on a :

C'est ce résultat qu'il faudra vérifier pour prouver qu'une fonction est paire. Méthode : Démontrer qu'une fonction est paire

Vidéo https://youtu.be/oheL-ZQYAy4

Démontrer que la fonction définie par =5 +3 est paire.

Correction

On a :

=5 +3=5 +3

Donc

La fonction est donc paire.

Sa représentation graphique (ci-contre) est symétrique par rapport à l'axe des ordonnées.

2. Fonction impaire

Définition : Une fonction dont la courbe est symétrique par rapport à l'origine du repère est une fonction impaire.

Remarque :

Pour une fonction impaire, on a :

C'est ce résultat qu'il faudra vérifier pour prouver qu'une fonction est impaire. 2 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr Méthode : Démontrer qu'une fonction est impaire

Vidéo https://youtu.be/pG0JNDLgEDY

Démontrer que la fonction définie par -3 est impaire.

Correction

On a :

-3× +3

Et -

-3 +3

Donc

La fonction est donc impaire. Sa représentation graphique (ci-contre) est symétrique par rapport à l'origine du repère.

Partie 2 : Fonction carré

Définition : La fonction carré est la fonction définie sur ℝ par

Remarque :

Dire que la fonction carré est définie sur ℝ signifie que peut prendre n'importe quelle

valeur de ℝ.

La courbe d'équation =

de la fonction carré est appelée une parabole. Propriété : La courbe d'équation = de la fonction carré est symétrique par rapport à l'axe des ordonnées. La fonction carré est paire.

Méthode : Comparer des images

Vidéo https://youtu.be/-d3fE8d0YOc

1) Représenter la fonction carré dans un repère.

2) a) Comparer graphiquement les nombres (0,5) et (2).

b) Même question avec (-1,5) et (-1).

3) Vérifier par calcul le résultat de la question 2b.

-2 -1 0 1 2

4 1 0 1 4

3 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Correction

1)

2) a) En traçant les images de 0,5 et de 2 par la fonction , on constate que :

0,5 2 b) En traçant les images de -1,5 et de -1 par la fonction , on constate que : -1 -1,5

3) On a .

Ainsi :

-1,5 -1,5 =2,25. -1 -1 =1

On en déduit que

-1 -1,5 Résoudre une inéquation avec la fonction carré :

Vidéo https://youtu.be/Xv_mdK9kaCA

fx =x 2 4 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Partie 3 : Fonction racine carrée

Définition : La fonction racine carrée est la fonction définie sur

0;+∞

par Remarque : La fonction racine carrée n'est pas définie pour des valeurs négatives. Résoudre une inéquation avec la fonction racine carrée :

Vidéo https://youtu.be/UPI7RoS0Vhg

Partie 4 : Fonction inverse

Définition : La fonction inverse est la fonction définie sur ℝ\ 0 par

Remarques :

• Dire que la fonction inverse est définie sur ℝ\ 0 signifie que peut prendre n'importe quelle valeur de ℝ sauf 0. On dit que la fonction inverse n'est pas définie en 0. • L'ensemble ℝ\ 0 peut se noter également ]-¥;0[∪]0;+¥[ ou encore ℝ*.

La courbe d'équation =

de la fonction inverse est appelée une hyperbole. -2 -1 0,25 1 2 3 () -0,5 -1 4 1 0,5 1 3 5 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Propriété : La courbe d'équation =

de la fonction inverse est symétrique par rapport à l'origine du repère. La fonction inverse est impaire. Méthode : Calculer une image ou un antécédent par la fonction inverse

Vidéo https://youtu.be/gHDcYSHfSlk

On considère la fonction définie sur ℝ\ 0 par =2+ a) Calculer les images de 3 et de 6 par la fonction . b) Calculer l'antécédent de 7 par la fonction .

Correction

a) - Image de 3 : 3 =2+ =2+1=3.

L'image de 3 est 3.

- Image de 6 : 6 =2+ 3 6 =2+0,5=2,5

L'image de 6 est 2,5.

b) Antécédent de 7 :

On résout l'équation

=7

Soit : 2+

=7 =7-2 3 =5 3 1 5 =3× 1 5 3 5

L'antécédent de 7 est

Résoudre une inéquation avec la fonction inverse :

Vidéo https://youtu.be/V07NxCl7Eto

6 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Partie 5 : Fonction cube

1. Définition et représentation graphique

Définition : La fonction cube est la fonction définie sur ℝ par Propriété : La courbe d'équation = de la fonction cube est symétrique par rapport à l'origine du repère. La fonction cube est impaire.

2. Positions relatives des courbes d'équations : =, =

et = Propriété : Pour des valeurs positives de , on a : - Si ≥1 : La courbe d'équation = se trouve au-dessus de la courbe d'équation = qui se trouve elle-même au-dessus de la courbe d'équation =.

Démonstration au programme :

Vidéo https://youtu.be/op54acayjIQ

• 1 er cas : si ≥ : - Pour étudier les positions relatives des courbes d'équations = et = il suffit d'étudier le signe de 7 Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Or,

-1 ≥0 car ≥1.

Donc, la courbe d'équation =

se trouve au-dessus de la courbe d'équation - Pour étudier les positions relatives des courbes d'équations = et il suffit d'étudier le signe de

Or,

-1 ≥0 car ≥1.

Donc la courbe d'équation =

se trouve au-dessus de la courbe d'équation - Dans ce cas, -1

Donc, la courbe d'équation =

se trouve en dessous de la courbe d'équation - Et, -1

Donc la courbe d'équation =

se trouve en dessous de la courbe d'équation

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur. www.maths-et-tiques.fr/index.php/mentions-legales

quotesdbs_dbs49.pdfusesText_49