[PDF] Trigonalisation et diagonalisation des matrices



Previous PDF Next PDF







Trigonalisation et diagonalisation des matrices

de relier des invariants d’une matrice, tels que sa trace et son determinant,´ a ses valeurs propres ` Si une matrice A est trigonalisable, semblable `a une matrice triangulaire sup ´erieure T, alors les valeurs propres de A etant les racines du polyn´ omeˆ p A, sont aussi les coefficients de la diagonale de la matrice T



Fiche technique 5 - Diagonalisation, trigonalisation

• Pour trigonaliser une matrice, il n’y a pas de méthode globale à connaître a priori • La trigonalisabilité d’une matrice s’obtient après le calcul de son polynôme caractéristique et le constat que ce polynôme est scindé sur le corps de référence de la matrice



Trigonalisation - Ensah-community

Par la recette dite des « tâtonnements successifs »ou saisi d’une inspiration venue d’en haut, on peut proposer A = 1 1 0 0 1 0 0 0 1 et B = 1 0 0 0 1 0 0 1 1 On vérifie que A et B commutent et ne sont ni l’un ni l’autre polynôme en l’autre car tout polynôme en une matrice triangulaire supérieure est une matrice triangulaire



Trigonalisation

Dans ce cas, il est facile de trigonaliser On commence par se calculer une famille de n −1 vecteurs propres indépendants(possibled’aprèsleshypothèses),etoncomplèteenunebaseE deRn en«rajoutant »unvecteur à lafin «Dans »cettebase, la matrice sera triangulaire Exemple : A = 9 1 6 − 7 1 −6 −10 1 −7 det(A−λI3)= ¯ ¯ ¯



Diagonalisation et trigonalisation

De nition 4 1 1) On dit qu’une matrice A= (a ij) de M n(K) est triangulaire sup erieure si a ij= 0 pour tout i>j 2) On dit qu’un endomorphisme uest "triangulable" (ou "trigonalisable") s’il existe une base dans laquelle la matrice de uest triangulaire sup erieure En particulier, etant donn e une base B, uun endomorphisme et A= Mat



Une matrice est trigonalisable ssi son polyn^ome caract

Une matrice est trigonalisable ssi son polyn^ome caract eristique est scind e Une m ethode e cace pour trigonaliser une matrice est d’utiliser les sous es-paces caract eristiques Si ˜ A(X) = Q k i=1 (X a i) i le sous espace caract eristique N i est le noyau de (A a iI) i Le sous espace propre E A(a i), qui est le noyau de (A a iI) est uns



L2 Math ematiques Math ematiques: ALGEBRE LINEAIRE II Cours

(1) Toute matrice carr ee complexe d’ordre 1 s" ecrit M= (a 1;1d Elle est donc trigonalisble (2) Soit n 1 x e Supposons que toute matrice complexe d?ordre n?1 soit trigonalis-able Consid erons une matrice M 2M nn+ 1(C) Nous avons vu, dans le cahpitre pr ec edent, que toute matrice complexe d’ordre padmettait pvaleurs propres distinctes



RÉDUCTION (1) 1 Diagonaliser ou, à défaut, trigonaliser, les

Déterminer une base de R3 dans laquelle la matrice de u est une matrice compagnon b Soit 1 2 0 2 2 3 2 2 1 A − = − − Réduire A, et en déduire le commutant de A (i e l'ensemble des matrices qui commutent avec A), les puissances de A, ainsi que d'éventuelles racines carrées de A 3 On considère la matrice 0 1 0 1 1 0 a A a a =



Triangularisation, jordanisation, exponentielle de matrices 1

Une matrice A (2,2), ou un endomorphisme ϕ, dont le polynˆome caract´eristique est scind´e et qui n’est pas diagonalisable a une valeur propre double λ Proposition 2 2 Sous l’hypoth`ese pr´ec´edente il existe P telle que P−1AP = J 2(λ) On dira qu’on a jordanis´e la matrice Une base de Jordanisation est obtenue de la mani



CORRECTION DU TD 3 - TSE

2) D’après l’exercice 1 , la matrice est trigonalisable et la décomposition de Jordan de cette matrice est : 3) Pour tout , on en déduit que : On doit donc chercher la puissance de la matrice ; pour cela, on la décompose en : où est une matrice nilpotente d’indice Comme les

[PDF] un multiple définition

[PDF] trigonaliser une matrice exemple

[PDF] trigonalisation méthode de jordan

[PDF] trigonalisation matrice 3x3

[PDF] qu'est ce qu'internet definition

[PDF] diagonalisation et trigonalisation des endomorphismes

[PDF] qu'est ce qu'internet pdf

[PDF] valeur propre xcas

[PDF] socialisme pdf

[PDF] principes du communisme engels

[PDF] difference entre capitalisme socialisme et communisme

[PDF] le communisme pour les nuls

[PDF] capitalisme pdf

[PDF] différence entre socialisme et communisme

[PDF] gluten de blé farine

CHAPITRE

7Trigonalisation et diagonalisation

des matrices Sommaire1 Trigonalisation des matrices . . . . . . . . . . . . . . . . . . . . . . . . .1

2 Diagonalisation des matrices . . . . . . . . . . . . . . . . . . . . . . . . .

7

3 Une obstruction au caract

`ere diagonalisable . . . . . . . . . . . . . . . .11

4 Caract

´erisation des matrices diagonalisables . . . . . . . . . . . . . . . .12

5 Matrices diagonalisables : premi

`eres applications . . . . . . . . . . . . .15

6 Trigonalisation et diagonalisation des endomorphismes . . . . . . . . . .

17

7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 Nous abordons dans ce chapitre les probl

`emes de trigonalisation et diagonalisation des ma- trices. Nous montrons que toute matrice `a coefficients complexes est trigonalisable, c"est-`a-dire semblable `a une matrice triangulaire sup´erieure. On pr´esente quelques cons´equences th´eoriques importantes de ce r

´esultat.

Le probl

`eme de la diagonalisation est plus´epineux. Une matrice n"est pas en g´en´eral dia- gonalisable, c"est- `a-dire semblable`a une matrice diagonale. Dans ce chapitre, on s"int´eressera aux obstructions au caract `ere diagonalisable. En particulier, nous donnerons une caract´erisation de nature g

´eom´etrique des matrices diagonalisables.

Nous pr

´esentons deux applications imm´ediates de la diagonalisation des matrices avec le calcul des puissances d"une matrice diagonalisable et la r

´esolution des syst`emes diff´erentiels

lin ´eaires d´efinis par une matrice diagonalisable. Nous reviendrons sur ces deux applications dans les prochains chapitres, notamment dans le cas o `u ils mettent en jeu des matrices non diagonalisables. x1 Trigonalisation des matrices

7.1.1. D

´efinition.-Une matriceAdeMn(K)est ditetrigonalisabledansMn(K), siAest semblable `a une matrice triangulaire sup´erieure deMn(K). C"est-`a-dire, s"il existe une matrice 1 2

CHAPITRE 7. TRIGONALISATION ET DIAGONALISATION

DES MATRICES

inversiblePdeMn(K)et une matrice triangulaire sup´erieureT`a coefficients dansKtelles que

A=PTP1:(7.1)

On notera que toute matrice triangulaire sup

´erieure´etant semblable`a une matrice triangu- laireinf a une matrice triangulaire inf´erieure.

7.1.2 Exercice.-SoitAune matrice deMn(K)et soitune valeur propre deA. Montrer

que la matriceAest semblable`a une matrice de la forme 2 6 664
0...B 03 7 775
o `uBest une matrice deMn1(K).

7.1.3. Caract

´erisation des matrices trigonalisables.-Le r´esultat suivant fournit une ca- ract ´erisation des matrices trigonalisables.7.1.4 Th ´eor`eme (Th´eor`eme de trigonalisation).-Une matriceAdeMn(K)est trigonalisable dansMn(K)si, et seulement si, son polynˆome caract´eristiquepAest scind´e

surK.Preuve.La condition est n ´ecessaire. SiAest une matrice trigonalisable, par d´efinition, elle est

semblable `a une matrice triangulaire sup´erieure : t=2 6 664
1

02...............

00n3 7 775

Le polyn

ˆome caract´eristique de la matriceTest scind´e : p

T= (1)n(x1):::(xn):

D"apr `es la proposition 6.3.3, deux matrices semblables ont mˆeme polynˆome caract´eristique. Ainsi,pA=pTet par suite le polynˆome caract´eristique deAest scind´e surK.

La condition est suffisante. On proc

`ede par r´ecurrence surn. Toute matrice deM1(K)est trigonalisable. On suppose que tout matrice deMn1(K), dont le polynˆome caract´eristique est scind ´e, est trigonalisable, montrons que cela est vrai pour toute matrice deMn(K). SoitA2 Mn(K), telle que le polynˆomepAsoit scind´e surK. Le polynˆomepAadmet donc au moins une racinedansK. Consid´erons un vecteur propreedansKnassoci´e`a la valeur propre. Compl´etons le vecteureen une baseB= (e;e2;:::;en)deKn. SoituA l"endomorphisme deKnassoci´e`a la matriceA,i.e., l"endomorphisme d´efini, pour tout vecteur xdeKn, paruA(x) =Ax. On a u

A(e) =Ae=e;

CHAPITRE 7. TRIGONALISATION ET DIAGONALISATION

DES MATRICES3

par suite, la matrice de l"endomorphismeuAexprim´e dans la baseBest [uA]B=2 6 664
0...B 03 7 775;
o `uBest une matrice deMn1(K). La matriceA´etant semblable`a la matrice[uA]B, il existe une matrice inversiblePdeMn(C), telle que P 1AP=2 6 664
0...B 03 7 775:

De plus, d"apr

`es 6.3.8, le polynˆome caract´eristique du blocBdivise le polynˆome caract´eristique

de la matriceA, il est donc scind´e comme ce dernier. Par hypoth`ese de r´ecurrence, la matriceB

est semblable `a une matrice triangulaire sup´erieure, il existe une matrice inversibleQdans M n1(K), telle quet0=Q1BQsoit triangulaire sup´erieure. En multipliant par blocs, on a : 2 6

6641 00

0...Q 03 7 7751
P 1AP2 6

6641 00

0...Q 03 7 775=2
6 664

0...Q1BQ

03 7 775
2 6 664

0...T0

03 7 775:

En posant

R=P2 6

6641 00

0...Q 03 7 775;
quotesdbs_dbs4.pdfusesText_8