[PDF] Limite dune suite Suites convergentes



Previous PDF Next PDF







LIMITES DE SUITES

Yvan Monka – Académie de Strasbourg – www maths-et-tiques 3 TI CASIO II Limite de la somme de termes consécutifs Méthode : Calculer la limite de la somme des premiers termes d'une suite



Limite dune suite Suites convergentes

Limite d'une suite Suites convergentes 1 Limite d'une suite 1 1 Limite infinie a) Définitions On dit que la suite(un)admet pour limite +∞ si et seulement si, pour tout nombre réel A, tous les termes de la suite sont supérieur à A à partir d'un certain rang



Limites de suites

III Problème d’application de calcul de limite 1 Premier problème Soit la suite de terme général un définie par : u0 =5 et 1 1 1 n n2 u u+= + 1 – Calculer les 5 premiers termes de la suite 2 – Montrer que la suite de terme général v un n= −2est une suite géométrique 3 – En déduire une expression de vn, puis de un en



Terminale S - Limite de suites - ChingAtome

cutifs d’une suite arithmétique Les nombres p1, p2, p4 sont trois termes consécutifs d’une suite géométrique Déterminer la valeur des six premiers termes de la suite (pn) 2 Rappels: autres : Exercice 3395 1 On considère la suite (un) n2N définie par: 8 >< >: u0 = 1 u1 = 1 un+2 = un+1 +un pour tout n2N Terminale S - Limite de



Les suites - Partie II : Les limites

Soit une suite arithmétique de raison Si , la suite tend vers Si , la suite tend vers Si , la suite tend vers car elle est constante Complément : Démonstration On sait que D'après les propriétés de la limite d'un produit, Si Si D'après les propriétés de la limite d'une somme, Si Si Exemple



Suites arithmético-géométriques Limite et somme d’une suite

Sur le graphique ci-contre, on a représenté les premiers termes d’une suite (u n) dont la limite est +1 A partir du rang n 0, tous les points représentant les termes de la suite sont au-dessus de la droite horizontale en traits discontinus x y n 0 un > A pour n >n 0 A 3 Cas particulier d’une suite géométrique Propriété 6 1 : Limite



Terminale S - Limite de suites - ChingAtome

4 Limites de somme des termes de suites : Exercice 2559 1 Soit (u n) n2 N la suite arithmétique de premier terme 2 et de raison 1 a Déterminer l’expression explicite des termes de la



Suites usuelles - Meilleur en Maths

Limite d’une suite arithmétique (un) est la suite arithmétique de premier terme u0=1 et de raison r = 0,5 Donc pour tout entier naturel n : un=1+0,5 n



Résumé de Cours SUITES NUMERIQUES PROF : ATMANI NAJIB 2BAC

Si une suite admet une limite finie cette limite est unique Toute suite croissante et majorée est convergente Toute suite décroissante et minorée est convergente Toute suite croissante et non majorée tend vers Toute suite décroissante et non minorée tend vers B)Suite arithmétique : arithmétique: ssi u u r nn 1 Le réel ???? la raison



[PDF] suites d'intégrales terminale s

[PDF] convergence et divergence maths

[PDF] convergence et divergence optique

[PDF] convergence et divergence définition

[PDF] convergence et divergence suite

[PDF] suite convergente définition

[PDF] dialogue entre un vendeur et un client en anglais

[PDF] conversation en allemand gratuit

[PDF] guide de conversation espagnol pdf

[PDF] la conversation amoureuse pdf

[PDF] dialogue d amour entre deux amoureux

[PDF] dialogue tragique entre deux amoureux

[PDF] dialogue d'amour triste

[PDF] dialogue d'amour entre une fille et un garcon

[PDF] poème conversation jean tardieu

Limite d'une suite.

Suites convergentes

1. Limite d'une suite.............................................p24. Cas particuliers................................................p9

2. Limites et comparaison....................................p65. Suites monotones.............................................p11

3. Opérations sur les limites.................................p7

Limite d'une suite.

Suites convergentes.

1. Limite d'une suite

1.1. Limite infinie

a) Définitions On dit que la suite(un)admet pour limite + ¥ si et seulement si, pour tout nombre réel A, tous les termes de la suite sont supérieur à A à partir d'un certain rang.

Il existe donc un entier

n0tel que, pour tout entier natureln, supérieur ou égal àn0, on aitun>A (un∈]A;+∞[).

On note

limn→+∞ un=+∞On dit que la suite (un)admet pour limite - ¥ si et seulement si, pour tout nombre réel A, tous les termes de la suite sont inférieur à A à partir d'un certain rang.

Il existe donc un entier

n0tel que, pour tout entier natureln, supérieur ou égal àn0, on aitunOn note limn→+∞ un=-∞b) Exemples un=3n+2. On veut démontrer quelimn→+∞un=+∞ Soit

Aun nombre réel.

un>AÛ3n+2>AÛn>A-2 3 A-2

3est un nombre réel donc compris entre 2 entiers consécutifs.

E (A-2

3)⩽A-2

3 3)+1 E (A-2

3)est la partie entière de

A-2 3.

On choisitn0=E

(A-2 3)+1 Si, n⩾n0alors un>Aet donclimn→+∞ un=+∞.

Limite d'une suite.

Suites convergentes.un=-n2. On veut démontrer quelimn→+∞ un=-∞ Soit

Aun nombre réel.

-n2A<0alors A=-BavecB>0(B=∣A∣)

[0;+∞[E(

On choisit

n⩾n0alors unOn construit un algorithme permettant de résoudre ce programme. Programmer, puis déterminer le rang à partir

duquel un⩾1000.

Avec Algobox :

Limite d'une suite.

Suites convergentes.

Avec une calculatrice TI :un=-n2.

limn→+∞ un=-∞Pour un réel

On construit un algorithme permettant de résoudre ce programme. Programmer, puis déterminer le rang à partir

Avec Algobox :

Avec une calculatrice TI :

1.2. Suites convergentes

a) Définitions lest un nombre réel.

On dit que la suite

(un)admet pour limite l si et seulement si, pour tout intervalle ouvert I, contenant l, contient tous les termes de la suite à partir d'un certain rang.

Limite d'une suite.

Suites convergentes.

On notelimn→+∞un=l

On dit alors que la suite(un)converge vers l et que la suite(un)est une suite convergente. On nomme suite divergente toute suite non convergente. b) Interprétation graphique sur un exemple

1.3. Proposition

Si une suite admet une limite alors celle-ci est unique.

Ce résultat est admis.

1.4. Remarques

a) Il existe des suites n'admettant pas de limite. Par exemple :un=(-1)n. Les termes de rangs pairs sont égaux à 1 et les termes de rangs impairs sont égaux à -1.

Conséquence :

Une suite divergente est une suite admettant une limite infinie ou n'admettant pas de limite. b) Si un=f(n)(pour tout entier naturel n)et sifadmetlpour limite en+∞alors la suite(un)converge versl.

Limite d'une suite.

Suites convergentes.

Exemple :un=3-1

n+1 f(x)=3-1 x+1. fest définie sur[0;+∞[et limx→+∞ f(x)=3Donc, la suite (un)converge vers 3.

Siun=f(n)(pour tout entier naturel n)et si

fadmet+∞ou-∞pour limite en+∞alorslimn→+∞ un=+∞ou limn→+∞ un=-∞Exemple : un=4n2-2 f(x)=4x2-2 fest définie sur[0;+∞[et limx→+∞

Attention, si

fn'admet pas de limite en+∞alors on ne peut pas conclure pour la limite de la suite(un).

Exemple :

f(x)=sin(πx) fest définie sur[0;+∞[etfn'admet pas de limite en+∞. un=f(n)=sin(πn)=0 (un)est la suite constante nulle :limn→+∞un=0

2. Limite et comparaison

2.1. Premier théorème de comparaison

(un)et(vn)deux suites.

Si à partir d'un certain rang

vn⩾unet silimn→+∞un=+∞alorslimn→+∞ vn=+∞.

Démonstration : La démonstration peut être l'objet d'une restitution organisée des connaissances au

baccalauréat.

A partir d'un certain rang

vn⩾un, c'est à dire qu'il existe un entier naturel N tel que sin⩾Nalorsvn⩾un. Soit Aun nombre réel. On sait quelimn→+∞un=0, donc il existe un entiern0tel que :

Limite d'une suite.

Suites convergentes.

Sin⩾n0alorsun>A.

On poseN0le plus grand des entiers naturels

N0=max(N;n0)etn0(on note :N0=max(N;n0)ouN0=Sup(N;n0)) Si, n⩾N0alors vn⩾unetun>Adoncvn>Aetlimn→+∞vn=0.

2.2. Deuxième théorème de comparaison

(un)et(vn)deux suites.

Si à partir d'un certain rang

vn⩽unet silimn→+∞un=-∞alorslimn→+∞ vn=-∞. La démonstration est analogue à la précédente.

2.3. Théorème des gendarmes

(un);(vn);(wn)sont trois suites. lest un nombre réel.

Si à partir d'un certain rang,

un⩽vn⩽wnet silimn→+∞un=limn→+∞wn=lalors(vn)est une suite convergente et converge vers l .

Démonstration :

A partir d'un certain rang

un⩽vn⩽wn, c'est à dire qu'il existe un entier naturel N tel que sin⩾Nalors un⩽vn⩽wn.

Soit I un intervalle ouvert contenant l.

limn→+∞un=ldonc il existe un entier naturel n0tel que : sin⩾n0alorsun∈Ilimn→+∞wn=ldonc il existe un entier naturel n'0tel que : sin⩾n'0alorswn∈IOn pose

N0le plus grand des entiers naturelsN;n0;n'0Si,

n⩾N0alors etun⩽vn⩽wn ;un∈I ;wn∈Idonc [un;wn]ÌI. Et vn∈Idonclimn→+∞vn=l.

3. Opérations sur les limites

Les règles opératoires sur les limites de suites sont les mêmes que celles pour les limites de fonctions.

3.1. Limite d'une somme de suites

Limite d'une suite.

Suites convergentes.

3.2. Limite d'un produit de suites

3.3. Limite de l'inverse d'une suite

3.3. Limite du quotient de deux suites

Limite d'une suite.

Suites convergentes.

4. Cas particuliers

4.1. Suites arithmétiques

a) Rappel(un)est la suite arithmétique de premier terme u0et de raisonrdonc pour tout entier n : un+1=un+ret un=u0+nrb) Limite d'une suite arithmétique

Si r >0 alors

limn→+∞ un=+∞Si r< 0 alors limn→+∞ un=-∞Si r= 0 alors limn→+∞ un=u0Remarque : Pour r=0, (un)est la suite constante égale àu0. Les seules suites arithmétiques convergentes sont les suites constantes (de raison 0).

4.2. Suites géométriques

a) Rappel (un)est la suite géométrique de premier terme u0et de raisonqdonc pour tout entier n : un+1=qunet un=u0qnb) Théorème

Si q >1 alors

limn→+∞ qn=+∞Démonstration :

La démonstration peut être l'objet d'une restitution organisée des connaissances au baccalauréat.

Limite d'une suite.

Suites convergentes.

On posea=q-1>0

q=a+1avec a>0Nous avons démontré dans la leçon 1 (par un raisonnement par récurrence) que pour tout entier naturel n,

(1+a)n⩾1+na

Or, limn→+∞(1+na)=+∞

En utilisant le théorème de comparaison, on peut conclure quelimn→+∞(1+a)n=+∞ soit

quotesdbs_dbs15.pdfusesText_21