[PDF] Terminale S - Loi uniforme Loi exponentielle



Previous PDF Next PDF







loi de probabilité à densité - sitemathfreefr

pour x ∈ [2;10]et 0 sinon ( densité de Loi Uniforme) a pour "loi de probabilité à densité" la fonction f définie sur I ⊂ R si et seulement si C f x a b



LOIS CONTINUE (I) Fonction de densité – Loi Uniforme

II - Loi uniforme sur [a ; b] Définition : Soit a et b deux réels tels que a < b La loi uniforme sur [a ; b], notée U([a; b]), est la loi ayant pour densité de probabilité la fonction constante f définie sur [a; b] par : f (x)= 1 b−a Propriété : Soit X une variable aléatoire qui suit une loi uniforme sur [a; b]



Loi continue : Partie II Loi uniforme sur [a b

Loi uniforme sur [a ; b] II - Loi uniforme sur [a ; b] Définition : Soit a et b deux réels tels que a < b La loi uniforme sur [a ; b], notée U([a; b]), est la loi ayant pour densité de probabilité la fonction constante f définie sur [a; b] par : f(x)= 1 b−a Propriété : Soit X une variable aléatoire qui suit une loi uniforme sur [a; b]



Terminale S - Loi uniforme Loi exponentielle

Loi uniforme Loi exponentielle I) Loi uniforme de probabilité sur [a : b] La loi de probabilité qui admet pour densité la fonction ???? constante égale à ???? ????−???? sur [????; ????], est appelée loi uniforme sur [????; ????] Soit [????; ????] un intervalle inclus dans [????; ????] et ???? une variable aléatoire suivant la loi



Variable Aléatoire Continue, Loi à densité

Loi à Densité, Loi Uniforme, Loi Exponentielle Lorsqu’une variable aléatoire X, est continue à valeurs les réels d’un intervalle I de R, sa loi de probabilité, dite continue n’est plus associée à la probabilité de chacune des valeurs En effetP(X = a) = 0 pour tout a 2 I On caractérise la loi de probabilité de X, par la



Probabilités à Densité Mathématiques Bac ES

Loi uniforme sur Définition : Une variable aléatoire suit une loi uniforme sur l’intervalle lorsque sa densité de probabilité est la fonction constante sur , de valeur : Traduction : ssi : L’espérance mathématique d’une loi uniforme sur : D’où : ou : Car d’après Chasles: du fait que: et C ab 1



Variable Aléatoire Continue, Loi à densité

Loi à Densité, Loi Uniforme, Loi Exponentielle Lorsqu’une variable aléatoire X, est continue à valeurs les réels d’un intervalle I de R, sa loi de probabilité, dite continue n’est plus associée à la probabilité de chacune des valeurs En effetP(X = a) = 0 pour tout a 2 I On caractérise la loi de probabilité de X, par la



Lois de probabilité à densité Loi normale

de densité f sur I, est : E(X)= Z (I) t f(t)dt 1 3 Loi uniforme : densité homogène 1 3 1 Définition Définition 3 : Une variable aléatoire X suit une loi uniforme dans l’intervalle I =[a,b], avec a 6=b, lorsque la densité f est constante sur cet intervalle On en déduit alors la fonction f: f(t)= 1 b −a



Chapitre 11 : Loi à densité - Lycée Paul Rey

Chapitre 11 : Loi à densité I Attendus • Savoir déterminer une probabilité quand on connait la densité (1 page 379) • Calculer une probabilité avec une loi uniforme (7-8 page 381) • Étudier une loi de durée de vie sans vieillissement (11 page 383) • Déterminer le paramètre d’une loi exponentielle (12 page 383)



Chapitre 4 : Variables aléatoires à densité

est une densité de probabilité appelée loi uniforme sur [a,b] 2°) Variable aléatoire à densité On dit que la VAR X est une variable aléatoire à densité s’il existe une densité de probabilité f telle que ∀x∈R ( )∫ −∞ = ≤ = x F(x) P X x f (t)dt Exemple : la variable X telle que ( ) ∫ −∞ = ≥ ≤≤

[PDF] densité définition PDF Cours,Exercices ,Examens

[PDF] densité des matériaux PDF Cours,Exercices ,Examens

[PDF] densité des métaux PDF Cours,Exercices ,Examens

[PDF] densité du cyclohexane par rapport a l'eau PDF Cours,Exercices ,Examens

[PDF] densité du diiode PDF Cours,Exercices ,Examens

[PDF] densité eau kg/m3 PDF Cours,Exercices ,Examens

[PDF] densité et masse volumique seconde PDF Cours,Exercices ,Examens

[PDF] Densité et position 2nde Physique

[PDF] densité lithosphère océanique PDF Cours,Exercices ,Examens

[PDF] densité marginale x y PDF Cours,Exercices ,Examens

[PDF] DENSITE MASSE VOLUMIQUE 2nde Physique

[PDF] densité matérielle ses PDF Cours,Exercices ,Examens

[PDF] densité médicale par département PDF Cours,Exercices ,Examens

[PDF] densité plomb PDF Cours,Exercices ,Examens

[PDF] Densité, masse volumique, concentration et quantité de matière 1ère Physique

Loi uniforme. Loi exponentielle

I) Loi uniforme de probabilité sur [a : b]

La loi de probabilité qui admet

pour densité la fonction ࢌ constante

égale à

sur [ࢇ ; ࢈], est appelée loi uniforme sur [ࢇ ; ࢈]

Soit [ࢉ ; ࢊ] un intervalle inclus dans [ࢇ ; ࢈] et ࢄ une variable aléatoire

suivant la loi uniforme sur [ࢇ ; ࢈], alors : ࡼ ( ࢉ ൑ࢄ ൑ࢊ )= ׬

Propriétés :

Si ܺ est une loi de probabilité suivant une loi uniforme sur l'intervalle [ܾ ;ܽ signifie que ܺ sur [ܾ ; ܽ L'espérance mathématique d'une variable aléatoire

ܾ ; ܽ] est ܧ(ܺ

Exemples :

1) Dans une ville (idéale) les autobus passent à chaque arrêt exactement toutes les

20 minutes. On appelle ܺ

ܺsur l'intervalle [0 ; 20], on a

donc : ( 5 ൑ܺ et ܲ( ܺ ൒12 )= ܲ ( 12 ൑ܺ enfin le temps d'attente moyen qui est égal à ܧܺ soit 10 minutes. 2) La fonction " alea » d'une calculatrice affiche au hasard un nombre réel appartenant à ]0 ; 1[. Soit ܺ le nombre affiché, ܺ une loi uniforme sur ]0 ; 1[. On a donc : ( 0,15 ൑ܺ = 0,25 et ܲ( ܺ ൒0,8 ) = ܲ ( 0,8 ൑ܺ =0,2

Remarque :

Si

ܺ suit une loi uniforme sur [ܾ ;ܽ

répartition de ܺ

Pour tout ݔג

ܨ (ݔ)=ܲ( ܺ ൑ݔ )= 0 si ݔ ൑ܽ si ܽ൑ݔ൑ܾ

1 si ݔ ൒ܾ

II) Loi exponentielle

1) Définition

Soit un réel strictement positif. Une variable aléatoire ࢄ suit une loi exponentielle de paramètre lorsque sa densité de probabilité est la fonction ࢌ la fonction définie sur [ 0 ; + [ par :

Remarque :

On peut vérifier que ݂ est bien une densité de probabilité sur [0 ; + [ en effet :

ł݂ est continue et positive sur [0 ; + [

= 1 - ݁ donc lim

݂(ݔ)݀ݔ=1

Ce qui signifie que l'aire sous la courbe de

݂ sur [0 ; + [ est égale à 1

Résultats :

Soit ܺ une variable aléatoire suivant la loi exponentielle de paramètre , et ܽ et ܾ deux réels positifs ou nuls ,alors on a: = 1 - ݁

ܽ ) = 1 - ܲ ( ܽ ܺ

Exemples :

Exemple 1 : La durée de vie d'un ordinateur portable exprimée en années est une variable aléatoire ܺ suivant la loi exponentielle de paramètre ߣ La probabilité que la durée de vie de cet ordinateur portable dépasse 5 ans est ( ܺ ൒5)=1െ ׬ ൎ0,535 La probabilité que la durée de vie de cet ordinateur portable soit inférieure à 3 ans est ܲ( ܺ ൑3)= ׬ =1െ݁ ൎ0,313 Exemple 2 : Le temps d'attente exprimé en minutes au guichet d'une banque est une variable aléatoire T suivant la loi exponentielle de paramètre ߣ probabilité qu'un client attende moins de 8 minutes est égale à 0,7. a) Calculer une valeur approchée à 0,0001 de ߣ = 0,7

De là ݁

ൎ0,1505 b) Calculer la probabilité qu'un client attende entre 15 et 20 minutes ൎ0,055

2) Propriétés

a) Espérance mathématique d'une loi exponentielle

Soit ܺ

> 0 ),alors :

Démonstration :

La fonction ܩ

a pour dérivée ܩ (ݐ)= t݁ d'où = lim

0= lim

Comme on sait que lim

=0 et que lim =0 on a ܧ(ܺ Remarque : E(ܺ) représente la valeur moyenne de la variable aléatoire de ܺ

Exemple :

Si ܺ est une variable aléatoire suivant une loi exponentielle de paramètre ߣ sa valeur moyenne soit égale à 20, alors on peut écrire que =20 d'où ߣ b) Probabilité conditionnelle

Démonstration :

Soit ܺ une variable aléatoire suivant une loi exponentielle de paramètre ߣ et ܽ deux réels strictement positifs. On cherche la probabilité que ܺ supérieure ou égale à ܽ + ݐ sachant que ܺ est supérieure à ܽ

D'où

D'où le nom de " loi de durée de vie sans vieillissement » donné quelquefois à la loi exponentielle.

Exemple :

La durée de vie d'un ordinateur portable exprimée en années est une variable aléatoire ܺ suivant la loi exponentielle de paramètre ߣ La probabilité que la durée de vie de cet ordinateur portable dépasse 5 ans sachant qu'il fonctionne depuis déjà 2 ans est égale à ( ܺ ൒5 )= ܲ( ܺ ൎ0,687 c) Fonction de répartition Si ࢄ est une variable aléatoire suivant une loi exponentielle de paramètre

ࣅ, on définit la fonction ࡲ appelée fonction de répartition de ࢄ de la façon

suivante :

Pour tout

0 si ࢞൑૙

si ࢞൒ 0quotesdbs_dbs5.pdfusesText_9