FONCTION LOGARITHME DÉCIMAL









FONCTION LOGARITHME NEPERIEN

La fonction logarithme népérien notée ln
LogTS


Exponentielle et logarithme

La fonction exponentielle (de base e) et la fonction logarithme (népérien) sont des fonctions réciproques : leurs courbes.
exponentielle et logarithme


La fonction logarithme décimal

La fonction logarithme décimal. Propriétés analytiques. Pour x strictement positif log(x) = ln(x) ln(10). (avec ln(10) = 2
LogarithmeDecimal


FONCTION EXPONENTIELLE ET FONCTION LOGARITHME

Remarque : Cette formule permet de transformer une somme en produit et réciproquement. Corollaires : Pour tous réels x et y on a : a) exp(− ) =.
Texplog





FONCTION LOGARITHME DÉCIMAL

Remarque : La première formule permet de transformer un produit en somme. Ainsi celui qui aurait à effectuer 36 x 62
LogTT


Rappel mathématique

Le logarithme de x en base a est u (on écrit alors loga x = u). Une formule simple familière aux étudiants en finance
mathrappel


FONCTION LOGARITHME NEPERIEN (Partie 1)

La fonction logarithme népérien notée ln
LogTESL


Tableaux des dérivées et primitives et quelques formules en prime

%20d%C3%A9riv%C3%A9es





formulaire.pdf

de définition de la formule : par exemple √a sous-entend a 李 0 n ∈ N∗
formulaire


FONCTION LOGARITHME NÉPÉRIEN

La fonction logarithme népérien notée ln
LogTC


212830 FONCTION LOGARITHME DÉCIMAL 1 YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr

FONCTION LOGARITHME DÉCIMAL

En 1614, un mathématicien écossais, John Napier (1550 ; 1617) ci-contre, plus connu sous le nom francisé de Neper publie " Mirifici logarithmorum canonis descriptio ». Dans cet ouvrage, qui est la finalité d'un travail de 20 ans, Neper présente un outil permettant de simplifier les calculs opératoires : le logarithme. Neper construit le mot à partir des mots grecs " logos » (logique) et arithmos (nombre). Toutefois cet outil ne tr ouvera son essor qu'après la mort de Neper. Les mathématiciens anglais Henri Briggs (1561 ; 1630) et William Oughtred (1574 ;

1660) reprennent et prolongent les travaux de Neper.

Les mathématiciens de l'époque établissent alors des tables de logarithmes de plus en plus précises.

L'intérêt d'établir ces tables logarithmiques est de permettre de substituer une multiplication par une addition

(partie 2). Ceci peut paraître dérisoire aujourd'hui, mais il faut comprendre qu'à cette époque, les calculatrices

n'existent évidemment pas, les nombres décimaux ne sont pas d'usage courant et les opérations posées telles

que nous les utilisons ne sont pas encore connues. Et pourtant l'astronomie, la navigation ou le commerce

demandent d'effectuer des opérations de plus en plus complexes. Partie 1 : Fonction exponentielle de base 10 et fonction logarithme décimal

1) Définition

Soit la fonction définie sur ℝ par =10

L'équation 10

=, avec >0, admet une unique solution dans ℝ.

Cette solution se note log().

Définition : On appelle logarithme décimal d'un réel strictement positif , l'unique solution

de l'équation 10 =. On la note log(). La fonction logarithme décimal, notée log, est la fonction : ⟼log() 2 YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr

Conséquences :

a) Pour >0 : 10 = revient à écrire =log() b) log10 c) Pour >0 : 10

2) Sens de variation

Propriété : La fonction logarithme décimal ⟼log() est croissante sur

0;+∞

Valeurs particulières : log(1)=0 ; log(10)=1 ; log6 1 10 7=-1 Partie 2 : Propriétés de la fonction logarithme décimal Méthode : Simplifier une expression contenant des logarithmes

Vidéo https://youtu.be/qdYQQlbz-AQ

Simplifier les expressions suivantes :

=log2-

2=+log2+

2= =2log()+log(2)-4log()

=log(10 1 5 D

Correction

=log2-

2=+log2+

2= =log62-

2=×2+

2=7 =log 4-2 =log(2) =2log()+log(2)-4log() =log( )+log(2)-log

Pour a > 0 et b > 0 :

log =log()+log()

Pour a > 0 et n entier naturel :

log( )=log() 3 YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr =log(

×2)-log

=log 3 2 ×2 3 4 I =log6 2 9 7 =log(10 1 5 D =log(10 )-log(5) =log(10)-log(5) =×1-log(5) =-log(5) Remarque : Voici comment Neper transformait un produit en somme : Celui qui aurait, par exemple, à effectuer 6×62, appliquerait la formule précédente, soit : 1 YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr

FONCTION LOGARITHME DÉCIMAL

En 1614, un mathématicien écossais, John Napier (1550 ; 1617) ci-contre, plus connu sous le nom francisé de Neper publie " Mirifici logarithmorum canonis descriptio ». Dans cet ouvrage, qui est la finalité d'un travail de 20 ans, Neper présente un outil permettant de simplifier les calculs opératoires : le logarithme. Neper construit le mot à partir des mots grecs " logos » (logique) et arithmos (nombre). Toutefois cet outil ne tr ouvera son essor qu'après la mort de Neper. Les mathématiciens anglais Henri Briggs (1561 ; 1630) et William Oughtred (1574 ;

1660) reprennent et prolongent les travaux de Neper.

Les mathématiciens de l'époque établissent alors des tables de logarithmes de plus en plus précises.

L'intérêt d'établir ces tables logarithmiques est de permettre de substituer une multiplication par une addition

(partie 2). Ceci peut paraître dérisoire aujourd'hui, mais il faut comprendre qu'à cette époque, les calculatrices

n'existent évidemment pas, les nombres décimaux ne sont pas d'usage courant et les opérations posées telles

que nous les utilisons ne sont pas encore connues. Et pourtant l'astronomie, la navigation ou le commerce

demandent d'effectuer des opérations de plus en plus complexes. Partie 1 : Fonction exponentielle de base 10 et fonction logarithme décimal

1) Définition

Soit la fonction définie sur ℝ par =10

L'équation 10

=, avec >0, admet une unique solution dans ℝ.

Cette solution se note log().

Définition : On appelle logarithme décimal d'un réel strictement positif , l'unique solution

de l'équation 10 =. On la note log(). La fonction logarithme décimal, notée log, est la fonction : ⟼log() 2 YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr

Conséquences :

a) Pour >0 : 10 = revient à écrire =log() b) log10 c) Pour >0 : 10

2) Sens de variation

Propriété : La fonction logarithme décimal ⟼log() est croissante sur

0;+∞

Valeurs particulières : log(1)=0 ; log(10)=1 ; log6 1 10 7=-1 Partie 2 : Propriétés de la fonction logarithme décimal Méthode : Simplifier une expression contenant des logarithmes

Vidéo https://youtu.be/qdYQQlbz-AQ

Simplifier les expressions suivantes :

=log2-

2=+log2+

2= =2log()+log(2)-4log()

=log(10 1 5 D

Correction

=log2-

2=+log2+

2= =log62-

2=×2+

2=7 =log 4-2 =log(2) =2log()+log(2)-4log() =log( )+log(2)-log

Pour a > 0 et b > 0 :

log =log()+log()

Pour a > 0 et n entier naturel :

log( )=log() 3 YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr =log(

×2)-log

=log 3 2 ×2 3 4 I =log6 2 9 7 =log(10 1 5 D =log(10 )-log(5) =log(10)-log(5) =×1-log(5) =-log(5) Remarque : Voici comment Neper transformait un produit en somme : Celui qui aurait, par exemple, à effectuer 6×62, appliquerait la formule précédente, soit :
  1. logarithme formule pdf
  2. logarithme formule changement base
  3. logarithme formule limites
  4. logarithme formule dérivée
  5. logarithme formule terminale
  6. formule logarithme népérien
  7. formule logarithme décimal
  8. formule logarithme et exponentielle