FONCTION LOGARITHME NEPERIEN (Partie 1)









FONCTION LOGARITHME NEPERIEN

La fonction logarithme népérien notée ln
LogTS


Exponentielle et logarithme

La fonction exponentielle (de base e) et la fonction logarithme (népérien) sont des fonctions réciproques : leurs courbes.
exponentielle et logarithme


La fonction logarithme décimal

La fonction logarithme décimal. Propriétés analytiques. Pour x strictement positif log(x) = ln(x) ln(10). (avec ln(10) = 2
LogarithmeDecimal


FONCTION EXPONENTIELLE ET FONCTION LOGARITHME

Remarque : Cette formule permet de transformer une somme en produit et réciproquement. Corollaires : Pour tous réels x et y on a : a) exp(− ) =.
Texplog





FONCTION LOGARITHME DÉCIMAL

Remarque : La première formule permet de transformer un produit en somme. Ainsi celui qui aurait à effectuer 36 x 62
LogTT


Rappel mathématique

Le logarithme de x en base a est u (on écrit alors loga x = u). Une formule simple familière aux étudiants en finance
mathrappel


FONCTION LOGARITHME NEPERIEN (Partie 1)

La fonction logarithme népérien notée ln
LogTESL


Tableaux des dérivées et primitives et quelques formules en prime

%20d%C3%A9riv%C3%A9es





formulaire.pdf

de définition de la formule : par exemple √a sous-entend a 李 0 n ∈ N∗
formulaire


FONCTION LOGARITHME NÉPÉRIEN

La fonction logarithme népérien notée ln
LogTC


212600 FONCTION LOGARITHME NEPERIEN (Partie 1)

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr1FONCTION LOGARITHME NEPERIEN (Partie 1) En 1614, un mathématicien écossais, John Napier (1550 ; 1617) ci-contre, plus connu sous le nom francisé de Neper publie " Mirifici logarithmorum canonis descriptio ». Dans cet ouvrage, qui est la fina lité d'un travail de 20 ans, Neper présente un outil permetta nt de simplifier le s calculs opératoires : le logarithme. Neper construit le mot à partir des mots grecs " logos » (logique) et arithmos (nombre). Toutefois cet outil ne trouvera son essor qu'après la mort de Neper. Les mathématiciens anglais Henri Briggs (1561 ; 1630) et William Oughtred (1574 ; 1660) reprennent et prolongent les travaux de Neper. Les mathématiciens de l'époque établissent alors des tables de logarithmes de plus en plus précises. L'intérêt d'établir ces tables logarithmiques est de permettre de substituer une multiplication par une addition (voir paragraphe II). Ceci peut paraître dérisoire aujourd'hui, mais il faut comprendre qu'à cette é poque, les calculatrices n'existent évidemment pas, les nombres décimaux ne sont pas d'usage courant et les opérations posées telles que nous les utilisons ne sont pas encore connues. Et pourtant l'astronomie, la navigation ou le commerce demandent d'effectuer des opérations de plus en plus complexes. I. Définition La fonction exponentielle est continue et strictement croissante sur

, à valeurs dans

0;+∞

. Pour tout réel a de

0;+∞

l'équation e x =a admet une unique solution dans

. Définition : On appelle logarithme népérien d'un réel strictement positif a, l'unique solution de l'équation

e x =a . On la note lna . La fonction logarithme népérien, notée ln, est la fonction : ln:0;+∞ x"lnx

Exemple : L'équation

e x =5 admet une unique solution. Il s'agit de x=ln5 . A l'aide de la calculatrice, on peut obtenir une valeur approchée : x≈1,61

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr2 Remarque : Les courbes représentatives des fonctions exponentielle et logarithme népérien sont symétriques par rapport à la droite d'équation

y=x . Conséquences : a) x=e a est équivalent à a=lnx avec x > 0 b) ln1=0 lne=1 ln 1 e =-1 c) Pour tout x, lne x =x d) Pour tout x strictement positif, e lnx =x

Démonstrations : a) Par définition b) - Car

e 0 =1 - Car e 1 =e - Car e -1 1 e c) Si on pose y=e x , alors x=lny=lne x d) Si on pose y=lnx , alors x=e y =e lnx

Exemples :

e ln2 =2 et lne 4 =4 Propriété : Pour tous réels x et y strictement positifs, on a : a) lnx=lny⇔x=y b) lnxDémonstration : a) x=y⇔e lnx =e lny ⇔lnx=lny b) xYvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr3Méthode : Résoudre une équation ou une inéquation Vidéo https://youtu.be/lCT-8ijhZiE Vidéo https://youtu.be/_fpPphstjYw Résoudre dans I les équations et inéquations suivantes : a)

lnx=2 , I=0;+∞ b) e x+1 =5 I=! c)

3lnx-4=8

, I=0;+∞ d) ln6x-1 ≥2 , I= 1 6 e) e x +5>4e x I=! a) lnx=2 ⇔lnx=lne 2 ⇔x=e 2

La solution est

e 2 . b) e x+1 =5 ⇔e x+1 =e ln5 ⇔x+1=ln5 ⇔x=ln5-1

La solution est

ln5-1 . c)

3lnx-4=8

⇔3lnx=12 ⇔lnx=4 ⇔lnx=lne 4 ⇔x=e 4

La solution est

e 4 . d) ln6x-1 ≥2 ⇔ln6x-1 ≥lne 2 ⇔6x-1≥e 2 ⇔x≥ e 2 +1 6

L'ensemble solution est donc

e 2 +1 6 . e) e x +5>4e x ⇔e x -4e x >-5 ⇔-3e x >-5 ⇔e x 5

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr1FONCTION LOGARITHME NEPERIEN (Partie 1) En 1614, un mathématicien écossais, John Napier (1550 ; 1617) ci-contre, plus connu sous le nom francisé de Neper publie " Mirifici logarithmorum canonis descriptio ». Dans cet ouvrage, qui est la fina lité d'un travail de 20 ans, Neper présente un outil permetta nt de simplifier le s calculs opératoires : le logarithme. Neper construit le mot à partir des mots grecs " logos » (logique) et arithmos (nombre). Toutefois cet outil ne trouvera son essor qu'après la mort de Neper. Les mathématiciens anglais Henri Briggs (1561 ; 1630) et William Oughtred (1574 ; 1660) reprennent et prolongent les travaux de Neper. Les mathématiciens de l'époque établissent alors des tables de logarithmes de plus en plus précises. L'intérêt d'établir ces tables logarithmiques est de permettre de substituer une multiplication par une addition (voir paragraphe II). Ceci peut paraître dérisoire aujourd'hui, mais il faut comprendre qu'à cette é poque, les calculatrices n'existent évidemment pas, les nombres décimaux ne sont pas d'usage courant et les opérations posées telles que nous les utilisons ne sont pas encore connues. Et pourtant l'astronomie, la navigation ou le commerce demandent d'effectuer des opérations de plus en plus complexes. I. Définition La fonction exponentielle est continue et strictement croissante sur

, à valeurs dans

0;+∞

. Pour tout réel a de

0;+∞

l'équation e x =a admet une unique solution dans

. Définition : On appelle logarithme népérien d'un réel strictement positif a, l'unique solution de l'équation

e x =a . On la note lna . La fonction logarithme népérien, notée ln, est la fonction : ln:0;+∞ x"lnx

Exemple : L'équation

e x =5 admet une unique solution. Il s'agit de x=ln5 . A l'aide de la calculatrice, on peut obtenir une valeur approchée : x≈1,61

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr2 Remarque : Les courbes représentatives des fonctions exponentielle et logarithme népérien sont symétriques par rapport à la droite d'équation

y=x . Conséquences : a) x=e a est équivalent à a=lnx avec x > 0 b) ln1=0 lne=1 ln 1 e =-1 c) Pour tout x, lne x =x d) Pour tout x strictement positif, e lnx =x

Démonstrations : a) Par définition b) - Car

e 0 =1 - Car e 1 =e - Car e -1 1 e c) Si on pose y=e x , alors x=lny=lne x d) Si on pose y=lnx , alors x=e y =e lnx

Exemples :

e ln2 =2 et lne 4 =4 Propriété : Pour tous réels x et y strictement positifs, on a : a) lnx=lny⇔x=y b) lnxDémonstration : a) x=y⇔e lnx =e lny ⇔lnx=lny b) xYvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr3Méthode : Résoudre une équation ou une inéquation Vidéo https://youtu.be/lCT-8ijhZiE Vidéo https://youtu.be/_fpPphstjYw Résoudre dans I les équations et inéquations suivantes : a)

lnx=2 , I=0;+∞ b) e x+1 =5 I=! c)

3lnx-4=8

, I=0;+∞ d) ln6x-1 ≥2 , I= 1 6 e) e x +5>4e x I=! a) lnx=2 ⇔lnx=lne 2 ⇔x=e 2

La solution est

e 2 . b) e x+1 =5 ⇔e x+1 =e ln5 ⇔x+1=ln5 ⇔x=ln5-1

La solution est

ln5-1 . c)

3lnx-4=8

⇔3lnx=12 ⇔lnx=4 ⇔lnx=lne 4 ⇔x=e 4

La solution est

e 4 . d) ln6x-1 ≥2 ⇔ln6x-1 ≥lne 2 ⇔6x-1≥e 2 ⇔x≥ e 2 +1 6

L'ensemble solution est donc

e 2 +1 6 . e) e x +5>4e x ⇔e x -4e x >-5 ⇔-3e x >-5 ⇔e x 5
  1. logarithme formule pdf
  2. logarithme formule changement base
  3. logarithme formule limites
  4. logarithme formule dérivée
  5. logarithme formule terminale
  6. formule logarithme népérien
  7. formule logarithme décimal
  8. formule logarithme et exponentielle