Les fonctions de référence









La fonction logarithme décimal

La fonction x ↦→ log(x) s'appelle la fonction logarithme décimal. c Jean-Louis Rouget 2012. Tous droits réservés. 1 http ://www.maths-france.fr.
LogarithmeDecimal


Approximation diophantienne sur les courbes elliptiques à

a Université des sciences et technologies de Lille UFR de mathématiques
pdf?md = bc fc c bbee fe c d c c &pid= s . S X main


Minorations de formes linéaires de logarithmes elliptiques

Société Mathématique de France. Mémoire 62. Supplément au Bulletin de la Résumé : nous obtenons une minoration de formes linéaires de logarithmes ellip-.
MSMF


Minorations de formes linéaires de logarithmes elliptiques

Société Mathématique de France. Mémoire 62. Supplément au Bulletin de la S. M. F.. Tome 123 1995
msmf.





Les fonctions de référence

7.3 La fonction exponentielle (de base e) . 7.4 Les fonctions logarithmes et exponentielles de base a . ... http ://www.maths-france.fr ...
FonctionsReference


Approximation diophantienne sur les courbes elliptiques à

logarithmes analogue aux estimations connues actuellement pour les tores formes linéaires de logarithmes elliptiques
art


Fondamentaux des mathématiques 1

43 boulevard 11 novembre 1918. Portail Math-Eco. 69622 Villeurbanne cedex
fondmath


Instituts de Recherche sur l'Enseignement des Mathématiques

Les directeurs des IREM en France et quelques animateurs d'IREM suivant les du logarithme dès le collège en mathématiques ; ceci est en relation avec le ...
compte rendu scientifique du seminaire international des irem





Minorations explicites de formes linéaires en deux logarithmes

11 déc. 2003 teaching and research institutions in France or ... [math]. Université de la Méditerranée - Aix-Marseille II 2003. Français. tel-00003964  ...


Programme de mathématiques de première générale

L'enseignement de spécialité de mathématiques de la classe de première générale est conçu à partir des intentions suivantes : - permettre à chaque élève de 


211630 Les fonctions de référence

Les fonctions de référence

Plan du chapitre

1Compléments sur la réciproque d"une bijection.......................................................page 2

1.1Rappels ................................................................................................. page 2

1.2Cas particuliers des applications deRdansRdérivables ................................................. page 22Les fonctionsx?→xn,n?N...............................................................................page 3

2.1Etude générale .......................................................................................... page 3

2.2Les fonctions du second degréx?→ax2+bx+c,a?=0.................................................. page 4

3Les fonctionsx?→1

xn,n?N?..............................................................................page 6

3.1Etude générale .......................................................................................... page 6

3.2Les fonctions homographiquesx?→ax+b

cx+d,a?=0,ad-bc?=0.......................................... page 7

4Les fonctionsx?→n⎷x......................................................................................page 9

5Fonctions circulaires.....................................................................................page 13

5.1Les fonctionssinusetcosinus.......................................................................... page 13

5.2La fonctionx?→eix.....................................................................................page 16

5.3Les fonctionstangenteetcotangente....................................................................page 16

6Les fonctions circulaires réciproques..................................................................page 20

3.1Les fonctionsarcsinusetarccosinus.....................................................................page 20

3.1.1 La fonctionarcsinus.............................................................................. page 20

3.1.2 La fonctionarccosinus............................................................................ page 23

3.2La fonctionarctangente................................................................................ page 287Les fonctions logarithmes et exponentielles...........................................................page 30

7.1Un peu d"histoire .......................................................................................page 33

7.2La fonctionlogarithme népérien........................................................................ page 34

7.2.1 Exercices d"introduction ..........................................................................page 34

7.2.2 Définition de la fonction ln ........................................................................page 34

7.2.3 Propriétés algébriques de ln .......................................................................page 35

7.2.4 Etude de la fonction ln ............................................................................page 36

7.2.5 Le nombre deNeper:e..........................................................................page 37

7.3La fonctionexponentielle(de basee) ................................................................... page 38

7.3.1 Exercice d"introduction ...........................................................................page 38

7.3.2 Définition et propriétés de la fonction exponentielle............................................... page38

7.3.3 Changement de notation :ex......................................................................page 39

7.4Les fonctionslogarithmesetexponentiellesde basea...................................................page 408Les fonctions puissances................................................................................page 43

9Les théorèmes de croissances comparées..............................................................page 44

10Trigonométrie hyperbolique..........................................................................page 45

10.1Les fonctions hyperboliques ........................................................................... page 45

10.1.1 Exercice d"introduction ..........................................................................page 45

10.1.2 Définition des fonctionssinus hyperboliqueetcosinus hyperbolique................................page 46

10.1.3 Etude conjointe de ch et sh ...................................................................... page46

10.1.4 Formulaire de trigonométrie hyperbolique ........................................................page 47

10.1.5 La fonctiontangente hyperbolique................................................................page 49

10.2Les fonctions hyperboliques réciproques................................................................page 51

10.2.1 La fonctionargument sinus hyperbolique......................................................... page 51

10.2.2 La fonctionargument cosinus hyperbolique....................................................... page 53

10.2.3 La fonctionargument tangente hyperbolique......................................................page 54

11La fonction valeur absolue............................................................................page 55

11.1Définition et propriétés de la valeur absolue............................................................page55

11.2Tableaux de valeurs absolues. Fonctions affines par morceauxet continues..............................page 57

11.3Minimum et maximum d"un couple de réels ............................................................page 58

11.4La fonction " signe »...................................................................................page 58

12La fonction partie entière.............................................................................page 59

12.1Définition et propriétés de lapartie entière.............................................................page 59

12.2La fonctionpartie décimale............................................................................ page 61

c ?Jean-Louis Rouget, 2009. Tous droits réservés.1 http ://www.maths-france.fr

1 Compléments sur la réciproque d"une bijection1.1 Rappels.On rappelle que sifest une application d"un ensembleEvers un ensembleF,

fest bijective??y?F,?!x?E/ y=f(x).

Dans ce cas, on peut définir la réciproquef-1def. Elle est entièrement caractérisée par

?(x,y)?E×F, y=f(x)?x=f-1(y). La réciproque defest également entièrement caractérisée par les égalités f-1◦f=IdEetf◦f-1=IdF, ce qui s"écrit encore ?x?E,(f-1(f(x)) =xet?y?F, f(f-1(y)) =y.

1.2 Cas particulier des applications deRdansRdérivables

y=x y=f(x) y=f -1 (x) x

0f(x0)

x ?0=f(x0)f -1(x?0) =x0 IJ Ci-contre, nous avons tracé le graphe d"une fonctionf, réalisant une bijection d"un intervalleIsur un intervalleJ, et le graphe de sa réciproque. Le graphe def-1est l"ensemble des points de coordonnées(x?,f-1(x?)) oùx?décrit l"intervalleJ(dans cette phrase, l"intervalleJest pensé sur l"axe des abscisses). On posex0=f-1(x?0)ou, ce qui revient au même,x?0=f(x),x0étant lui un réel de l"intervalleI. On passe du point(x0,f(x0)) = (f-1(x?0),x?0) au point(x?0,f-1(x?0))en échangeant les deux coordonnées. Géométrique- ment, les deux points(x0,f(x0))et(x?0,f-1(x?0))sont symétriques l"un de l"autre par rapport à la droite d"équationy=x. Ainsi, le graphe def-1est le symétrique du graphe def par rapport à la droite d"équationy=x. On démontrera dans le cours d"analyse les résultats suivants.

Théorème 1.Soitfune application définie sur un intervalleIdeRà valeurs dansRet dérivable surI. Si la dérivée de

fest strictement positive surI(ou strictement négative surI), alorsfréalise une bijection deIsurf(I) =Jqui est un

intervalle de même nature queI(ouvert, semi-ouvert, fermé). Sa réciproquef-1est alors dérivable surJet,

(f-1)?=1 f?◦f-1, ou, ce qui revient au même, ?x?J,(f-1)?(x) =1 f?(f-1(x)).

fetf-1sont toutes deux strictement monotones surIetJrespectivement, et ont même sens de variations surIetJ

respectivement.

L"égalité(f-1)?(x0) =1f?(f-1(x0))est lisible sur le graphique : par symétrie, le coefficient directeur de la tangente au

graphe def-1au point(x?0,f-1(x?0))est l"inverse du coefficient directeur de la tangente au graphe defau point(x0,f(x0)).

En effet, soientM(a,b)etN(c,d)deux points d"abscisses et d"ordonnées distinctes. Leurs symétriques par rapport à la

droite d"équationy=xsont les pointsM?(b,a)etN?(d,c). Le coefficient directeur de la droite(M?N?)est

y

N?-yM?

xN?-xM?=c-ad-b=?d-bc-a? -1 =?yN-yMxN-xM? -1

et est donc l"inverse du coefficient directeur de la droite(MN). On applique alors ce travail aux pointsM0(x0,f(x0))et

M(x,f(x))puis on fait tendrexversx0et on obtient le résultat. c ?Jean-Louis Rouget, 2009. Tous droits réservés.2 http ://www.maths-france.fr

2 Les fonctionsx?→xn,n?N

2.1 Etude générale

Pourn?Netxréel, on posefn(x) =xn. Quandn=0, la fonctionfnest la fonction constantex?→1et quandn=1,

la fonctionfnest la fonctionx?→x. Sinon Théorème 2.Soitn?N\ {0,1}. La fonctionfn;x?→xnest dérivable surRet?x?R, f?n(x) =nxn-1.

Démonstration.Soitx0?R. Pour tout réel non nulh, on a d"après la formule du binôme deNewton

f n(x0+h) -fn(x0) h=1h x n

0+nhxn-1

0+ n 2!

Les fonctions de référence

Plan du chapitre

1Compléments sur la réciproque d"une bijection.......................................................page 2

1.1Rappels ................................................................................................. page 2

1.2Cas particuliers des applications deRdansRdérivables ................................................. page 22Les fonctionsx?→xn,n?N...............................................................................page 3

2.1Etude générale .......................................................................................... page 3

2.2Les fonctions du second degréx?→ax2+bx+c,a?=0.................................................. page 4

3Les fonctionsx?→1

xn,n?N?..............................................................................page 6

3.1Etude générale .......................................................................................... page 6

3.2Les fonctions homographiquesx?→ax+b

cx+d,a?=0,ad-bc?=0.......................................... page 7

4Les fonctionsx?→n⎷x......................................................................................page 9

5Fonctions circulaires.....................................................................................page 13

5.1Les fonctionssinusetcosinus.......................................................................... page 13

5.2La fonctionx?→eix.....................................................................................page 16

5.3Les fonctionstangenteetcotangente....................................................................page 16

6Les fonctions circulaires réciproques..................................................................page 20

3.1Les fonctionsarcsinusetarccosinus.....................................................................page 20

3.1.1 La fonctionarcsinus.............................................................................. page 20

3.1.2 La fonctionarccosinus............................................................................ page 23

3.2La fonctionarctangente................................................................................ page 287Les fonctions logarithmes et exponentielles...........................................................page 30

7.1Un peu d"histoire .......................................................................................page 33

7.2La fonctionlogarithme népérien........................................................................ page 34

7.2.1 Exercices d"introduction ..........................................................................page 34

7.2.2 Définition de la fonction ln ........................................................................page 34

7.2.3 Propriétés algébriques de ln .......................................................................page 35

7.2.4 Etude de la fonction ln ............................................................................page 36

7.2.5 Le nombre deNeper:e..........................................................................page 37

7.3La fonctionexponentielle(de basee) ................................................................... page 38

7.3.1 Exercice d"introduction ...........................................................................page 38

7.3.2 Définition et propriétés de la fonction exponentielle............................................... page38

7.3.3 Changement de notation :ex......................................................................page 39

7.4Les fonctionslogarithmesetexponentiellesde basea...................................................page 408Les fonctions puissances................................................................................page 43

9Les théorèmes de croissances comparées..............................................................page 44

10Trigonométrie hyperbolique..........................................................................page 45

10.1Les fonctions hyperboliques ........................................................................... page 45

10.1.1 Exercice d"introduction ..........................................................................page 45

10.1.2 Définition des fonctionssinus hyperboliqueetcosinus hyperbolique................................page 46

10.1.3 Etude conjointe de ch et sh ...................................................................... page46

10.1.4 Formulaire de trigonométrie hyperbolique ........................................................page 47

10.1.5 La fonctiontangente hyperbolique................................................................page 49

10.2Les fonctions hyperboliques réciproques................................................................page 51

10.2.1 La fonctionargument sinus hyperbolique......................................................... page 51

10.2.2 La fonctionargument cosinus hyperbolique....................................................... page 53

10.2.3 La fonctionargument tangente hyperbolique......................................................page 54

11La fonction valeur absolue............................................................................page 55

11.1Définition et propriétés de la valeur absolue............................................................page55

11.2Tableaux de valeurs absolues. Fonctions affines par morceauxet continues..............................page 57

11.3Minimum et maximum d"un couple de réels ............................................................page 58

11.4La fonction " signe »...................................................................................page 58

12La fonction partie entière.............................................................................page 59

12.1Définition et propriétés de lapartie entière.............................................................page 59

12.2La fonctionpartie décimale............................................................................ page 61

c ?Jean-Louis Rouget, 2009. Tous droits réservés.1 http ://www.maths-france.fr

1 Compléments sur la réciproque d"une bijection1.1 Rappels.On rappelle que sifest une application d"un ensembleEvers un ensembleF,

fest bijective??y?F,?!x?E/ y=f(x).

Dans ce cas, on peut définir la réciproquef-1def. Elle est entièrement caractérisée par

?(x,y)?E×F, y=f(x)?x=f-1(y). La réciproque defest également entièrement caractérisée par les égalités f-1◦f=IdEetf◦f-1=IdF, ce qui s"écrit encore ?x?E,(f-1(f(x)) =xet?y?F, f(f-1(y)) =y.

1.2 Cas particulier des applications deRdansRdérivables

y=x y=f(x) y=f -1 (x) x

0f(x0)

x ?0=f(x0)f -1(x?0) =x0 IJ Ci-contre, nous avons tracé le graphe d"une fonctionf, réalisant une bijection d"un intervalleIsur un intervalleJ, et le graphe de sa réciproque. Le graphe def-1est l"ensemble des points de coordonnées(x?,f-1(x?)) oùx?décrit l"intervalleJ(dans cette phrase, l"intervalleJest pensé sur l"axe des abscisses). On posex0=f-1(x?0)ou, ce qui revient au même,x?0=f(x),x0étant lui un réel de l"intervalleI. On passe du point(x0,f(x0)) = (f-1(x?0),x?0) au point(x?0,f-1(x?0))en échangeant les deux coordonnées. Géométrique- ment, les deux points(x0,f(x0))et(x?0,f-1(x?0))sont symétriques l"un de l"autre par rapport à la droite d"équationy=x. Ainsi, le graphe def-1est le symétrique du graphe def par rapport à la droite d"équationy=x. On démontrera dans le cours d"analyse les résultats suivants.

Théorème 1.Soitfune application définie sur un intervalleIdeRà valeurs dansRet dérivable surI. Si la dérivée de

fest strictement positive surI(ou strictement négative surI), alorsfréalise une bijection deIsurf(I) =Jqui est un

intervalle de même nature queI(ouvert, semi-ouvert, fermé). Sa réciproquef-1est alors dérivable surJet,

(f-1)?=1 f?◦f-1, ou, ce qui revient au même, ?x?J,(f-1)?(x) =1 f?(f-1(x)).

fetf-1sont toutes deux strictement monotones surIetJrespectivement, et ont même sens de variations surIetJ

respectivement.

L"égalité(f-1)?(x0) =1f?(f-1(x0))est lisible sur le graphique : par symétrie, le coefficient directeur de la tangente au

graphe def-1au point(x?0,f-1(x?0))est l"inverse du coefficient directeur de la tangente au graphe defau point(x0,f(x0)).

En effet, soientM(a,b)etN(c,d)deux points d"abscisses et d"ordonnées distinctes. Leurs symétriques par rapport à la

droite d"équationy=xsont les pointsM?(b,a)etN?(d,c). Le coefficient directeur de la droite(M?N?)est

y

N?-yM?

xN?-xM?=c-ad-b=?d-bc-a? -1 =?yN-yMxN-xM? -1

et est donc l"inverse du coefficient directeur de la droite(MN). On applique alors ce travail aux pointsM0(x0,f(x0))et

M(x,f(x))puis on fait tendrexversx0et on obtient le résultat. c ?Jean-Louis Rouget, 2009. Tous droits réservés.2 http ://www.maths-france.fr

2 Les fonctionsx?→xn,n?N

2.1 Etude générale

Pourn?Netxréel, on posefn(x) =xn. Quandn=0, la fonctionfnest la fonction constantex?→1et quandn=1,

la fonctionfnest la fonctionx?→x. Sinon Théorème 2.Soitn?N\ {0,1}. La fonctionfn;x?→xnest dérivable surRet?x?R, f?n(x) =nxn-1.

Démonstration.Soitx0?R. Pour tout réel non nulh, on a d"après la formule du binôme deNewton

f n(x0+h) -fn(x0) h=1h x n

0+nhxn-1

0+ n 2!
  1. math france logarithme