[PDF] [PDF] VECTEURS DE LESPACE - maths et tiques





Previous PDF Next PDF



VECTEURS DE LESPACE

Soit d la droite passant par B de vecteur directeur k ! . Comme k ! n'est pas colinéaire avec i ! et j !



Vecteurs et repérage dans lespace

Les droites (AB) et (CD) sont parallèles les vecteurs AB et CD sont colinéaires. 2) Vecteurs coplanaires. Définition : Trois vecteurs de l'espace u



VECTEURS DROITES ET PLANS DE LESPACE

La droite d passant par et de vecteur directeur T? est l'ensemble des points tels que les vecteurs TTTTTT? et T? sont colinéaires. Propriété : 



Géométrie de lespace

Soient u v deux vecteurs de l'espace non colinéaires. Soit n ? R3. 1. n ? (u et v) ssi n est orthogonal à tout vecteur de Vect(u



Géométrie dans lespace

On prend comme mod`ele de l'espace R3. b) Somme de deux vecteurs produit d'un scalaire par un vecteur. Définition. ... a) Vecteurs colinéaires.



DÉTERMINANTS DANS LE PLAN ET DANS LESPACE

Avant de passer à la dimension 3 signalons que le déterminant permet de caractériser par une équation les paires de vecteurs colinéaires. Proposition 1.5. Avec 



PRODUIT SCALAIRE DANS LESPACE

Donc est orthogonal à deux vecteurs non colinéaires de (ABG) il est donc normal à (ABG). Méthode : Déterminer un vecteur normal à un plan. Vidéo https://youtu.



VECTEURS DROITES ET PLANS DE LESPACE

Tout vecteur colinéaire à {? est solution. XI. Projection orthogonale. 1) Projection orthogonale d'un point sur une droite. Définition : Soit 



Vecteurs droites et plans de lespace

2 Droites de l'espace. 2.1 Colinéarité alignement



Vecteur dans l espace

Deux vecteurs non nuls Åu et Åv sont colinéaires si et seulement s'ils ont la même direction. Application : soient A B et C trois points de l'espace. Ä. AB et 



[PDF] VECTEURS DE LESPACE - maths et tiques

Définition : Un vecteur de l'espace est défini par une direction de Un plan est donc totalement déterminé par un point et deux vecteurs non colinéaires



[PDF] VECTEURS DROITES ET PLANS DE LESPACE - maths et tiques

Propriété : Deux vecteurs non nuls et non colinéaires déterminent la direction d'un plan Propriété : Soit un plan passant par un point et dirigé par deux 



[PDF] 1 ) vecteurs de lespace - Pierre Lux

Les règles de calcul sur les vecteurs de l'espace sont analogues aux règles de calcul Par convention le vecteur nul est colinéaire à tout autre vecteur



[PDF] Vecteurs de lespace - AlloSchool

Applications : – Les droites (AB) et (CD) sont parallèles si et seulement si les vecteurs ??? AB et ??? CD sont colinéaires – Les points A B et C 



[PDF] vecteurs-de-l-espace-cours-et-exercices-corrigespdf - AlloSchool

de tels vecteurs sont colinéaires AB MN = ssi ABNM est un parallélogramme II) LES OPERATIONS DANS 3 V 1) L'addition Définition : u et v deux vecteurs 



[PDF] Première S - Colinéarité de deux vecteurs - Parfenoff org

Le vecteur nul 0 est colinéaire à tous les vecteurs Exemples : a) ( 2 ; – 3 ) et ( 10 ; – 15 ) sont colinéaires en effet 10 



géométrie dans lespace - repère - vecteur colinéaire - Jaicompris

Vecteur de l'espace · colinéaires · Vecteurs coplanaires · Points coplanaires · Repère de l'espace · coordonnées d'un point · coordonnées du milieu · coordonnées du 



[PDF] Vecteur dans l espacepdf

Deux vecteurs non nuls Åu et Åv sont colinéaires si et seulement s'ils ont la même direction Application : soient A B et C trois points de l'espace Ä AB et 



[PDF] VECTEURS DROITES ET PLANS DE LESPACE - Maths91fr

Les droites (AB) et (CD) sont parallèles si et seulement si les vecteurs ??? AB et ??? CD sont colinéaires PROPRIÉTÉ admise 3) vecteurs coplanaires



[PDF] Géométrie vectorielle dans le plan et dans lespace

Définition: vecteurs colinéaires Deux vecteurs sont dits colinéaires si l'un est le produit de l'autre par un réel Remarque : le vecteur est colinéaire à tous 

  • Comment représenter un vecteur dans l'espace ?

    Un vecteur dans l'espace à trois dimensions peut être écrit sous forme de composantes, ( �� , �� , �� ) , ou en fonction des vecteurs unitaires, �� ? �� + �� ? �� + �� ? �� .
  • Comment montrer que 2 vecteurs ne sont pas colinéaires dans l'espace ?

    On regarde si les coordonnées des vecteurs sont proportionnelles. Si les coordonnées sont proportionnelles, alors les vecteurs sont colinéaires. Si les coordonnées ne sont pas proportionnelles, alors les vecteurs ne sont pas colinéaires.
  • Étymologiquement, colinéaire signifie sur une même ligne : en géométrie classique, deux vecteurs sont colinéaires si on peut en trouver deux représentants situés sur une même droite. sont parallèles.

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr1VECTEURS DE L'ESPACE I. Caractérisation vectorielle d'un plan 1) Notion de vecteur dans l'espace Définition : Un vecteur de l'espace est défini par une direction de l'espace, un sens et une norme (longueur). Remarque : Les vecteurs de l'espace suivent les mêmes règles de construction qu'en géométrie plane : Relation de Chasles, propriétés en rapport avec la colinéarité, ... restent valides. 2) Plan de l'espace Propriété : Soit un point A et deux vecteurs de l'espace

u et v non colinéaires. L'ensemble des points M de l'espace tels que AM =xu +yv , avec x∈! et y∈! est le plan passant par A et dirigé par u et v . Remarque : Dans ces conditions, le triplet A;u ,v est un repère du plan. Démonstration : - Soit deux points B et C tel que u =AB et v =AC u et v ne sont pas colinéaires donc A;u ,v est un repère du plan (ABC). Dans ce repère, tout point M de coordonnées x;y est tel que AM =xu +yv . - Réciproquement, soit M un point de l'espace tel que AM =xu +yv

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr2Soit N le point du plan (ABC) de coordonnées

x;y dans le repère A;u ,v . Alors AN =xu +yv et donc AN =AM

. M et N sont confondus donc M appartient à (ABC). Remarque : Un plan est donc totalement déterminé par un point et deux vecteurs non colinéaires. Propriété : Deux plans déterminés par le même couple de vecteurs non colinéaires sont parallèles. Démonstration : Soit deux plan P et P' de repères respectifs

A;u ,v et B;u ,v

. - Si P et P' sont confondus, la démonstration est triviale. - Dans la suite P et P' ne sont pas confondus. Supposons que P et P' possède un point M en commun. Alors dans P, on a :

AM =xu +yv où x;y sont les coordonnées de M dans P. Et dans P', on a : BM =x'u +y'v où x';y' sont les coordonnées de M dans P'. Donc AB =x-x' u +y-y' v donc B appartient à P. Donc le repère B;u ,v

est un repère de P et donc P et P' sont confondus ce qui est contraire à l'hypothèse de départ. P et P' n'ont aucun point en commun et sont donc parallèles. II. Vecteurs coplanaires et repère de l'espace 1) Vecteurs coplanaires Définition : Trois vecteurs sont coplanaires s'ils possèdent des représentants appartenant à un même plan.

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr3Propriété : Soit i j et k trois vecteurs non coplanaires. Pour tout vecteur u , il existe un unique triplet x;y;z tel que u =xi +yj +zk . Démonstration : - Existence : Soit AB un représentant de u . Soit P le plan de repère A;i ;j . Si B appartient à P alors AB se décompose suivant les vecteurs i et j . Supposons que B n'appartient pas à P. Soit d la droite passant par B de vecteur directeur k . Comme k n'est pas colinéaire avec i et j , la droite d coupe le plan P en un point C. On peut écrire AB =AC +CB AC appartient au plan P donc il existe un couple x;y tel que AC =xi +yj BC est colinéaire avec k donc il existe un réel z tel que BC =zk . Il existe donc un triplet x;y;z tel que AB =u =xi +yj +zk . - Unicité : On suppose que l'on ait les deux écritures distinctes : u =xi +yj +zk =x'i +y'j +z'k Alors x-x' i +y-y' j +z-z' k 0 . Supposons que l'une au moins des trois différence n'est pas nulle, par exemple z-z'≠0 . Donc k x'-x z-z' i y'-y z-z' j et dans ce cas, les vecteurs i j et k seraient coplanaires. Ce qui est exclu. Les trois différences x-x' y-y' et z-z' sont nulles. Exemple : ABCDEFGH est un cube. Les vecteurs AB BC et CG sont non coplanaires. Le vecteurs AG se décompose en : AG =AB +BC +CG

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr4 2) Repère de l'espace Définition : Soit

i j et k

trois vecteurs non coplanaires. O est un point de l'espace. On appelle repère de l'espace le quadruplet

O;i ,j ,k . Remarques : - O est appelé l'origine du repère. - La décomposition OM =xi +yj +zk donne les coordonnées x y z du point M. - De même, la décomposition u =xi +yj +zk donne les coordonnées x y z du vecteur u

. Méthode : Démontrer l'alignement par décomposition de vecteurs Vidéo https://youtu.be/oY0BgzNDsQU ABCDEFGH est un cube. Soit I le milieu de [AH] et J le point de [FI] tel que

FJ 2 3 FI

. Démontrer que les points E, J et C sont alignés. Pour prouver cet alignement, on va démontrer que les vecteurs

EJ et EC sont colinéaires. Les vecteurs AB AD et AE sont non coplanaires donc il est possible de décomposer les vecteurs EJ et EC en fonction de ces trois vecteurs. EJ =EF +FJ =AB 2 3 FI =AB 2 3 FE +EA 1 2 AH =AB 2 3 FE +EA 1 2 AE 1 2 EH =AB 2 3 FE 1 2 EA 1 2 EH =ABquotesdbs_dbs35.pdfusesText_40
[PDF] vecteur perpendiculaire

[PDF] exemple fiche grcf bts ag

[PDF] fiche descriptive appel d'offre

[PDF] fiche grcf accueil information et conseil

[PDF] fiche grcf commande fournisseur

[PDF] fiche grcf passation de commande

[PDF] fiche grcf bts ag appel d'offre

[PDF] fiche grcf facture client

[PDF] projet de cycle gymnastique niveau 1

[PDF] atelier gymnastique artistique

[PDF] gymnastique niveau 2

[PDF] fiche ressource gymnastique niveau 1

[PDF] groupe agrial

[PDF] agrial caen

[PDF] eurial agrial