[PDF] PRODUIT SCALAIRE DANS LESPACE Donc est orthogonal à deux vecteurs





Previous PDF Next PDF



VECTEURS DE LESPACE

Soit d la droite passant par B de vecteur directeur k ! . Comme k ! n'est pas colinéaire avec i ! et j !



Vecteurs et repérage dans lespace

Les droites (AB) et (CD) sont parallèles les vecteurs AB et CD sont colinéaires. 2) Vecteurs coplanaires. Définition : Trois vecteurs de l'espace u



VECTEURS DROITES ET PLANS DE LESPACE

La droite d passant par et de vecteur directeur T? est l'ensemble des points tels que les vecteurs TTTTTT? et T? sont colinéaires. Propriété : 



Géométrie de lespace

Soient u v deux vecteurs de l'espace non colinéaires. Soit n ? R3. 1. n ? (u et v) ssi n est orthogonal à tout vecteur de Vect(u



Géométrie dans lespace

On prend comme mod`ele de l'espace R3. b) Somme de deux vecteurs produit d'un scalaire par un vecteur. Définition. ... a) Vecteurs colinéaires.



DÉTERMINANTS DANS LE PLAN ET DANS LESPACE

Avant de passer à la dimension 3 signalons que le déterminant permet de caractériser par une équation les paires de vecteurs colinéaires. Proposition 1.5. Avec 



PRODUIT SCALAIRE DANS LESPACE

Donc est orthogonal à deux vecteurs non colinéaires de (ABG) il est donc normal à (ABG). Méthode : Déterminer un vecteur normal à un plan. Vidéo https://youtu.



VECTEURS DROITES ET PLANS DE LESPACE

Tout vecteur colinéaire à {? est solution. XI. Projection orthogonale. 1) Projection orthogonale d'un point sur une droite. Définition : Soit 



Vecteurs droites et plans de lespace

2 Droites de l'espace. 2.1 Colinéarité alignement



Vecteur dans l espace

Deux vecteurs non nuls Åu et Åv sont colinéaires si et seulement s'ils ont la même direction. Application : soient A B et C trois points de l'espace. Ä. AB et 



[PDF] VECTEURS DE LESPACE - maths et tiques

Définition : Un vecteur de l'espace est défini par une direction de Un plan est donc totalement déterminé par un point et deux vecteurs non colinéaires



[PDF] VECTEURS DROITES ET PLANS DE LESPACE - maths et tiques

Propriété : Deux vecteurs non nuls et non colinéaires déterminent la direction d'un plan Propriété : Soit un plan passant par un point et dirigé par deux 



[PDF] 1 ) vecteurs de lespace - Pierre Lux

Les règles de calcul sur les vecteurs de l'espace sont analogues aux règles de calcul Par convention le vecteur nul est colinéaire à tout autre vecteur



[PDF] Vecteurs de lespace - AlloSchool

Applications : – Les droites (AB) et (CD) sont parallèles si et seulement si les vecteurs ??? AB et ??? CD sont colinéaires – Les points A B et C 



[PDF] vecteurs-de-l-espace-cours-et-exercices-corrigespdf - AlloSchool

de tels vecteurs sont colinéaires AB MN = ssi ABNM est un parallélogramme II) LES OPERATIONS DANS 3 V 1) L'addition Définition : u et v deux vecteurs 



[PDF] Première S - Colinéarité de deux vecteurs - Parfenoff org

Le vecteur nul 0 est colinéaire à tous les vecteurs Exemples : a) ( 2 ; – 3 ) et ( 10 ; – 15 ) sont colinéaires en effet 10 



géométrie dans lespace - repère - vecteur colinéaire - Jaicompris

Vecteur de l'espace · colinéaires · Vecteurs coplanaires · Points coplanaires · Repère de l'espace · coordonnées d'un point · coordonnées du milieu · coordonnées du 



[PDF] Vecteur dans l espacepdf

Deux vecteurs non nuls Åu et Åv sont colinéaires si et seulement s'ils ont la même direction Application : soient A B et C trois points de l'espace Ä AB et 



[PDF] VECTEURS DROITES ET PLANS DE LESPACE - Maths91fr

Les droites (AB) et (CD) sont parallèles si et seulement si les vecteurs ??? AB et ??? CD sont colinéaires PROPRIÉTÉ admise 3) vecteurs coplanaires



[PDF] Géométrie vectorielle dans le plan et dans lespace

Définition: vecteurs colinéaires Deux vecteurs sont dits colinéaires si l'un est le produit de l'autre par un réel Remarque : le vecteur est colinéaire à tous 

  • Comment représenter un vecteur dans l'espace ?

    Un vecteur dans l'espace à trois dimensions peut être écrit sous forme de composantes, ( �� , �� , �� ) , ou en fonction des vecteurs unitaires, �� ? �� + �� ? �� + �� ? �� .
  • Comment montrer que 2 vecteurs ne sont pas colinéaires dans l'espace ?

    On regarde si les coordonnées des vecteurs sont proportionnelles. Si les coordonnées sont proportionnelles, alors les vecteurs sont colinéaires. Si les coordonnées ne sont pas proportionnelles, alors les vecteurs ne sont pas colinéaires.
  • Étymologiquement, colinéaire signifie sur une même ligne : en géométrie classique, deux vecteurs sont colinéaires si on peut en trouver deux représentants situés sur une même droite. sont parallèles.
1

PRODUIT SCALAIRE

DANS L'ESPACE

I. Produit scalaire de deux vecteurs

1) Définition

Soit et deux vecteurs de l'espace. A, B et C trois points tels que et Il existe un plan P contenant les points A, B et C.

Définition :

On appelle produit scalaire de l'espace de et le produit égal au produit scalaire dans le plan P.

On a ainsi :

- si ou est un vecteur nul,

Exemple :

Vidéo https://youtu.be/vp3ICG3rRQk

ABCDEFGH est un cube d'arête a.

uvuAB=vAC=uv.uv.ABAC.0uv=uv .cos ;uvuv uv=´´ 2 uvAB DG ABAF ABAB a H 2

2) Propriétés

Les propriétés dans le plan sont conservées dans l'espace. Propriétés : Soit , et trois vecteurs de l'espace. - et sont orthogonaux.

Démonstration :

Il existe un plan P tel que les vecteurs et admettent des représentants dans P. Dans le plan, les règles de géométrie plane sur les produits scalaires s'appliquent.

3) Expression analytique du produit scalaire

Propriété : Soit et deux vecteurs de l'espace muni d'un repère orthonormé . Alors .

Et en particulier : .

Démonstration :

En effet, on a par exemple dans le plan définit par le couple : , et .

On a en particulier : .

Exemple :

Vidéo https://youtu.be/N1IA15sKH-E

On considère le repère de l'espace .

uvw 2 .uuu= ..uvvu = ...uvwu vuw +=+ ...kuvu kvk uv== kÎ.0uv=Ûuvuv x uy z x vy z ,,,Oijk .'''uvx xyy zz=++ 222
.uuuxyz==++ uvx iyj zkxiyjz k xxiixy ij xzi kyxjiy yjj yzj kzxkizyk jzzk k xxyyzz ;ij 2 .1iii== 2 .1jjj== ..0ijji == 2 222
.uuu xxy yzz xyz==++=++ ;,,CCBCDCG 3

Alors : et soit .

Alors .

Les vecteurs et ne sont pas orthogonaux.

II. Vecteur normal à un plan

1) Définition et propriétés

Définition : Un vecteur non nul de l'espace est normal à un plan P lorsqu'il est orthogonal à tout vecteur admettant un représentant dans P. Théorème : Un vecteur non nul de l'espace est normal à un plan P s'il est orthogonal à deux vecteurs non colinéaires de P.

Démonstration :

Elle est incluse dans la démonstration du corollaire qui suit. Au XIXe siècle, le vecteur normal , appelé produit vectoriel, est noté ⋀. Le produit vectoriel a été inventé par un mathématicien allemand, Hermann

Günther Grassmann (1809 ; 1877).

Corollaire : Une droite est orthogonale à toute droite d'un plan si et seulement si elle est orthogonale à deux droites sécantes de ce plan.

Démonstration (exigible BAC) :

- Si une droite est orthogonale à toute droite d'un plan P alors elle est en particulier orthogonale à deux droites sécantes de P. - Démontrons la réciproque : 1 1 1 CE 10 01 0,50 DI 1 1 0,5 DI .111110,50,5CEDI =´+´-+´= CE DI nnnuv 4 Soit une droite de vecteur directeur orthogonale à deux droites et de P sécantes et de vecteurs directeurs respectifs et . Alors et sont non colinéaires et orthogonaux au vecteur . Soit une droite quelconque () de P de vecteur directeur .

Démontrons que () est orthogonale à .

peut se décomposer en fonction de et qui constituent une base de P (car non colinéaires).

Il existe donc deux réels x et y tels que .

Donc , car est orthogonal avec et .

Donc est orthogonal au vecteur .

Et donc est orthogonale à ().

Méthode : Déterminer si un vecteur est normal à un plan

Vidéo https://youtu.be/aAnz_cP72Q4

ABCDEFGH est un cube.

Démontrer que le vecteur est normal au plan

(ABG).

On considère le repère .

Dans ce repère : ,,,,.

On a ainsi :

, et , donc : Donc est orthogonal à deux vecteurs non colinéaires de (ABG), il est donc normal à (ABG). Méthode : Déterminer un vecteur normal à un plan

Vidéo https://youtu.be/IDBEI6thBPU

Dans un repère orthonormé, soit et .

Déterminer un vecteur normal au plan (ABC).

d n 1 d 2 d uvuvn D w D d wuv wxuyv=+...0wnxu nyvn=+= nuvnw d D CF ;,,BBABC BF 1 0 0 A 0 0 0 B 0 1 0 C 0 0 1 F 0 1 1 G 0 1 1 CF 0 1 1 BG 1 0 0 AB .0011110 .0(1)10100 CFBG CFAB CF 11 2,3 21
AB 2 0 2 C 5

On a : et .

Soit un vecteur orthogonal au plan (ABC). Il est tel que : soit

Prenons par exemple, alors et .

Le vecteur est donc normal au plan (ABC).

2) Equation cartésienne d'un plan

Théorème : L'espace est muni d'un repère orthonormé . Un plan P de vecteur normal non nul admet une équation cartésienne de la forme , avec ℝ. Réciproquement, si a, b et c sont non tous nuls, l'ensemble des points tels que , avec ℝ, est un plan.

Démonstration (exigible BAC) :

- Soit un point de P. 2 1 3 AB 1 2 0 AC a nb c .0 .0 nAB nAC 230
20 abc ab 2230
2 330
2 2 bbc ab bc ab cb ab b=1 1c= a=2 2 1 1 n ;,,Oijk a nb c ax+by+cz+d=0 dÎ x My z ax+by+cz+d=0 dÎ A A A x Ay z 6 et sont orthogonaux avec . - Réciproquement, supposons par exemple que (a, b et c sont non tous nuls). On note E l'ensemble des points vérifiant l'équation

Alors le point vérifie l'équation .

Et donc E.

Soit un vecteur . Pour tout point , on a :

E est donc l'ensemble des points tels que .

Donc l'ensemble E est le plan passant par A et de vecteur normal .

Exemple :

Le plan d'équation cartésienne a pour vecteur normal . Méthode : Déterminer une équation cartésienne de plan

Vidéo https://youtu.be/s4xqI6IPQBY

Dans un repère orthonormé, déterminer une équation cartésienne du plan P passant par le point et de vecteur normal . x MyP z AM n.0AMnÛ= 0 0 AAA AAA axxb yyc zz axbyc zaxby cz

Ûax+by+cz+d=0

d=-ax A -by A -cz A a¹0 x My z ax+by+cz+d=0 ;0;0 d A a ax+by+cz+d=0 AÎ a nb c x My z .000 d

AMna xby cz axbyc zd

a x My z .0AMn=n x-y+5z+1=0 1 1 5 n 1 2 1 A 3 3 1 n 7 Une équation cartésienne de P est de la forme . Le point A appartient à P donc ses coordonnées vérifient l'équation : donc .

Une équation cartésienne de P est donc .

3) Positions relatives d'une droite et d'un plan

Méthode : Déterminer l'intersection d'une droite et d'un plan

Vidéo https://youtu.be/BYBMauyizhE

Dans un repère orthonormé, le plan P a pour équation .

Soit et .

1) Démontrer que la droite (AB) et le plan P sont sécants.

2) Déterminer leur point d'intersection.

1) Un vecteur normal de P est .

(AB) et P sont sécants si et ne sont pas orthogonaux. On a Comme , on conclut que (AB) et le plan P ne sont pas parallèles et donc sécants.

2) Une représentation paramétrique de la droite (AB) est :

3x-3y+z+d=0

313210d´--´ ++=

d=8

3x-3y+z+8=0

2x-y+3z-2=0

1 2 3 A 1 2 0 B 2 1 3 n n AB 2 0 3 AB .223350ABn=-´+´=¹ 8 avec t réel. Le point intersection de (AB) et de P vérifie donc le système suivant :

On a donc

soit .

D'où

Ainsi la droite (AB) et le plan P sont sécants en .

4) Positions relatives de deux plans

Méthode : Déterminer l'intersection de deux plans

Vidéo https://youtu.be/4dkZ0OQQwaQ

Dans un repère orthonormé, les plans P et P ' ont pour équations respectives et .

1) Démontrer que les plans P et P' sont sécants.

2) Déterminer une représentation paramétrique de leur droite d'intersection d.

x=1-2t y=2 z=-3+3t x My z x=1-2t y=2 z=-3+3t

2x-y+3z-2=0

2122 33 320 tt--+-+-=

5t-11=0

t= 11 5 x=1-2´ 11 5 17 5 y=2 z=-3+3´ 11 5 18 5 1718
;2; 55
M -x+2y+z-5=0

2x-y+3z-1=0

9

1) P et P' sont sécants si leurs vecteurs normaux ne sont pas colinéaires.

Un vecteur normal de P est et un vecteur normal de P' est . Les coordonnées des deux vecteurs ne sont pas proportionnelles donc leurs vecteurs ne sont pas colinéaires.

2) Le point de d, intersection de P et de P', vérifie donc le système suivant :

On choisit par exemple x comme paramètre et on pose . On a alors : Ce dernier système est une représentation paramétrique de d, avec ℝ. Propriété : Deux plans sont perpendiculaires lorsqu'un vecteur normal de l'un est orthogonal à un vecteur normal de l'autre. - Admis - 1quotesdbs_dbs35.pdfusesText_40
[PDF] vecteur perpendiculaire

[PDF] exemple fiche grcf bts ag

[PDF] fiche descriptive appel d'offre

[PDF] fiche grcf accueil information et conseil

[PDF] fiche grcf commande fournisseur

[PDF] fiche grcf passation de commande

[PDF] fiche grcf bts ag appel d'offre

[PDF] fiche grcf facture client

[PDF] projet de cycle gymnastique niveau 1

[PDF] atelier gymnastique artistique

[PDF] gymnastique niveau 2

[PDF] fiche ressource gymnastique niveau 1

[PDF] groupe agrial

[PDF] agrial caen

[PDF] eurial agrial