[PDF] DÉRIVATION (Partie 2) Définitions : Soit f une





Previous PDF Next PDF



Dérivabilité

Plus généralement la fonction f est dérivable en tout x0 ? R et f?(x0)=2x0. Pour montrer que f?1 est dérivable sur tout un intervalle J = f(I)



Analyse 1 FONCTIONS DERIVABLES 1. La dérivée dune fonction

La dérivée d'une fonction. Définition. Soient I un intervalle de R f : I ? R une fonction et a ? I. On dit que f est dérivable en a si f(x) ? f(a).



TD5 dAnalyse (DUMI2E) Dérivabilité

dérivable en f(x0) montrer que g ? f est bien dérivable en x0. [Cours] Soient I un intervalle ouvert et f une fonction dérivable et strictement.



Chapitre 3 Dérivabilité des fonctions réelles

Dans tout ce chapitre I désigne un intervalle non vide de R. Définition 3.1.1. Soit f : I ? R une fonction



DÉRIVATION (Partie 2)

Définitions : Soit f une fonction définie sur un intervalle I. On dit que f est dérivable sur I si elle est dérivable en tout réel x de I.



Continuité et dérivabilité dune fonction

7 Kas 2014 Si f est dérivable sur un intervalle I alors la fonction f est ... Montrer que l'équation f(x) = 0 n'admet qu'une solution sur R. On donnera ...



DÉRIVATION

L est appelé le nombre dérivé de f en a. 2) Tangente à une courbe. Soit une fonction f définie sur un intervalle I et dérivable en un nombre réel a.



Feuille 10. Dérivabilité

f(x) = ( x + exp(1/x2) si x > 0 sin x



Analyse

Donc f n'est pas dérivable en 0. (Faire un dessin pour la tangente). Exercice 9. Montrer par la définition que la fonction sin est dérivable sur R et donner 



FONCTION DERIVÉE

Définitions : Soit f une fonction définie sur un intervalle I. On dit que f est dérivable sur I si elle est dérivable en tout réel x de I.



Exo7 - Exercices de mathématiques

1 (a)Montrer que f est dérivable sur R+ et calculer f0(x) pour x >0: (b)En étudiant le signe de f0(x)sur R+;montrer que f atteint un minimum sur R+ que l’on déterminera 2 (a)En déduire l’inégalité suivante: (1+x)n 62n 1(1+xn); 8x 2R+: (b)Montrer que si x 2R+ et y2R+ alors on a (x+y)n 62n 1(xn +yn): Correction H Vidéo [000739] 1



Dérivation - maths-francefr

Dé?nition 8 10 – Soit f une fonction dé?nie sur un intervalle I On dit que f est dérivable sur I si f est dérivable en tout point x 2I Alors la fonction f 0: I! R x 7! f 0(x) avec 8a 2I lim x!a f 0(a) ? f (x)¡ a x¡a est appelée la fonction dérivée de la fonction f Exemple 8 11 – † La fonction carrée est dérivable sur R



Dérivabilité des fonctions Définition de la dérivabilité

La fonction f est le produit d’un polynôme (x² + 3x) dérivable sur R et d’une racine continue sur ]?8;+?[donc elle est dérivable sur ]?8;+?[ Attention : vous remarquerez la différence entre l’exemple de la continuité et celui-ci : l’intervalle d’étude est totalement ouvert ! En un point Là encore il n’y a qu’une



???????????? ????et ????dérivable sur ?

2) ????est une fonction dérivable sur ? donc continue sur ? L’image de l’intervalle ? par ???? c’est-à-dire ???? ?/ est donc aussi un intervalle Reste à montrer que ????est soit un singleton ^????‘ c’est-à-dire un intervalle de la forme [????;????] soit ? tout entier



Fonctions dérivables - CNRS

1 La fonction f est croissante si et seulement si f0(x) 0 pour tout x2I Si f0>0 alors f est strictementcroissante 2 La fonction f est décroissante si et seulement si f0(x) 0 pour tout x2I Si f00 telque]x 0 ;x 0 + [ˆI



Searches related to montrer que f est dérivable sur r PDF

Démontrer que f est dérivable en 3 et calculer f ?(3) Exercice n° 2 Soit f la fonction définie sur ? par : () 2 1 si 0 1 si 0 x x f x x x ? < = ? ? La fonction f est-elle dérivable sur ?? Exercice n° 3 f est la fonction définie sur ? par f x x()= +2 3 a) Pour tout réel h ?0 démontrer que : () 2 0

Quelle est la dérivabilité d’une fonction?

1 Fonctions dérivables en un point 1.1 Dé?nition de la dérivabilité en un point Définition 1. Soit f une fonction dé?nie sur un intervalle ouvert I de Rà valeurs dans R(resp. C). Soit x0un réel élément de l’intervalle I. La fonction f est dérivable en x0si et seulement si le rapport f(x)?f(x0) x?x0

Comment montrer que f est dérivable en a ?

On dit que f est dérivable en a lorsque au (h) tend vers un nombre réel quand h prend des valeurs proches de 0. Ce réel est appelé nombre dérivé de f en a et est noté f^ {prime} (a). On écrit alors : f^ {prime} (a) = mathop {lim}limits_ {h rightarrow 0} { dfrac {f (a+h)-f (a)} {h}}. Quand h est proche de 0, on dit que « h tend vers 0 ».

Comment savoir si une fonction est dérivable à droite ?

Soit f une fonction définie sur un intervalle I contenant un intervalle de la forme [ a, t] où t ? a, on dit que f est dérivable à droite en a si la restriction de f à l'intervalle [ a, t] est dérivable en a. On note alors la dérivée en a de cette restriction, et on l'appelle le nombre dérivé de la fonction f en a à droite.

Comment reconnaître la dérivabilité ?

Par contre, la notion de dérivabilité retrouve un sens quand f est prolongée en continuité en x0. Attention : la réciproque n’est pas vraie : il est possible (mais ce n’est pas un cas courant) de construire des fonctions continues qui n’admettent pas de dérivée, la fonction étant très « instable » en tous lieux et à toutes les échelles.

1

DÉRIVATION - Chapitre 2/3

Tout le cours en vidéo : https://youtu.be/uMSNllPBFhQ

Partie 1 : Dérivées des fonctions usuelles

1) Exemple :

Démonstration au programme : Dérivée de la fonction carré

Vidéo https://youtu.be/-nRmE8yFSSg

Soit la fonction définie sur ℝ par Démontrons que pour tout réel, on : ′ =2. Calculons le nombre dérivé de la fonction en (nombre réel quelconque).

Pour ℎ≠0 :

= 2+ℎ

Or : lim

= lim

2+ℎ = 2

Pour tout nombre , on associe le nombre dérivé de la fonction égal à 2.

On a donc défini sur ℝ une fonction, notée ′ dont l'expression est ′

=2. Cette fonction s'appelle la fonction dérivée de . Le mot " dérivé » vient du latin " derivare » qui signifiait " détourner un cours d'eau ». Le mot a été introduit par le mathématicien franco-italien Joseph Louis Lagrange (1736 ; 1813) pour signifier que cette nouvelle fonction dérive (au sens de "provenir") d'une autre fonction. Démonstration au programme : Dérivée de la fonction inverse

Vidéo https://youtu.be/rQ1XfMN5pdk

Soit la fonction définie sur ℝ\{0} par Démontrons que pour tout de ℝ\{0}, on a : ′ 1 2

Pour ℎ≠0 et ℎ≠- :

Or : lim

= lim 5- 1 6 = - Pour tout nombre , on associe le nombre dérivé de la fonction égal à - Ainsi, pour tout de ℝ\{0}, on a : ′ 1 2 2

Définitions :

On dit que la fonction est dérivable sur un intervalle ,si elle est dérivable en tout réel

de .

Dans ce cas, la fonction qui à tout réel de associe le nombre dérivé de en est appelée

fonction dérivée de et se note ′.

2) Dérivées des fonctions usuelles :

Fonction Dérivée

=0 =2 ≥1 entier ≥1 entier +1

Méthode : Dériver les fonctions usuelles

Vidéo https://youtu.be/9Mann4wOGJA

Calculer la dérivée de chacune des fonctions : =100 ; =-5 ; ℎ

Correction

=100→ =0 =-5→′ =-5 =4 5 6

3) Cas de la fonction racine carrée

On peut lire dans le tableau plus haut que la fonction racine carrée est définie sur l'intervalle

0;+∞

mais dérivable sur l'intervalle ]0;+∞[. 3 Démonstration au programme : Non dérivabilité de la fonction racine carrée en 0

Vidéo https://youtu.be/N5wnOoLDrjo

Soit la fonction définie sur

0;+∞

par On calcule le taux d'accroissement de en 0 :

Pour ℎ>0 :

5$% 5 5$%' 5

Or : lim

0+ℎ

0 = lim 1

En effet, lorsque ℎ tend vers 0,

prend des valeurs de plus en plus grandes.

Donc n'est pas dérivable en 0.

Géométriquement, cela signifie que la courbe représentative de la fonction racine carrée admet une tangente verticale en 0. Partie 2 : Opérations sur les fonctions dérivées

1) Opérations sur les fonctions dérivées :

et sont deux fonctions dérivables.

Démonstration au programme pour le produit :

Vidéo https://youtu.be/PI4A8TLGnxE

Soit et deux fonctions dérivables sur un intervalle . On veut démontrer que pour tout de , on a : lim

Fonction Dérivée

1 4 0 1 En passant à la limite lorsque ℎ tend vers 0, on a : lim = ′() et lim Car et sont dérivables sur .

Et,lim

Soit, lim

Ainsi :

Méthode : Calculer les dérivées de sommes, produits et quotients de fonctions

Vidéo https://youtu.be/ehHoLK98Ht0

Vidéo https://youtu.be/1fOGueiO_zk

Vidéo https://youtu.be/OMsZNNIIdrw

Vidéo https://youtu.be/jOuC7aq3YkM

Vidéo https://youtu.be/-MfEczGz_6Y

Dans chaque cas, calculer la fonction dérivée de : a) =3 +4 b) =5 -3 c)

3

+4

5-1

d) 1

2

2 +5 e)

6-5

2 -2-1

Correction

a) avec =3 =3×2=6 =4 =4

Donc : ′

= 6 + b) avec =5 ()=5×3 =15 =-3 ()=-3×2=-6

Donc :

()=15 +(-6)=15 -6 c) avec =3 +4 → ()=6+4 =5-1 →′ =5

Donc : ′

6+4

5-1

3

+4 ×5 =30 -6+20-4+15 +20 5 =45 +34-4
d) 1 avec =2 +5 → ()=4+5

Donc : ′

0 e) avec =6-5 → ()=6 -2-1 → =2-2

Donc : ′

0 0 $.(/$.5/'.5 1 $.5/'.?

2) Dérivée d'une fonction composée

Fonction Dérivée

Méthode : Dériver une fonction composée (+)

Vidéo https://youtu.be/aFkPQkg0p-A

Calculer les fonctions dérivées des fonctions et ℎ définies par :

7+1

5-4

Correction

1)

7+1

=7×3

7+1

=21

7+1

En effet, la dérivée de la fonction cube est =3

2) ℎ

5-4

=5× En effet, la dérivée de la fonction racine carrée est P Qquotesdbs_dbs35.pdfusesText_40
[PDF] montrer qu'une fonction n'est pas dérivable en un point

[PDF] fonction continue sur un compact atteint ses bornes

[PDF] majoré minoré suite

[PDF] matrice diagonalisable exercice corrigé

[PDF] exemple dossier de synthèse bac pro sen tr

[PDF] rapport de synthèse bac pro sen avm

[PDF] endomorphisme nilpotent exercice corrigé

[PDF] endomorphisme nilpotent problème

[PDF] matrice nilpotente pdf

[PDF] dossier de synthèse bac pro sen ed

[PDF] relation d'ordre partiel

[PDF] relation d'ordre mpsi

[PDF] relation d'ordre exemple

[PDF] relation d'ordre inclusion

[PDF] relation d'ordre majorant minorant