[PDF] PRODUIT SCALAIRE DANS LESPACE est orthogonale à deux droites sé





Previous PDF Next PDF



REPRÉSENTATIONS PARAMÉTRIQUES ET ÉQUATIONS

1) Démontrer que la droite ( ) et le plan P sont sécants. 2) Déterminer leur point d'intersection. 1) Un vecteur normal de P est 7? ^. 2.



Droites et plans dans lespace

Démontrer que les deux plans sont sécants. Donner une représentation paramétrique de la droite (d) intersection de ces deux plans. 2. Intersection d'un plan 



Représentation paramétrique de droites de plans Applications

1.2 Intersection de deux droites . 2 Représentation paramétrique d'un plan de l'Espace ... 1 Représentations paramétriques d'une droite de l'Espace.



1 METHODES DE GEOMETRIE ANALYTIQUE DANS LESPACE

Méthode 18 : Déterminer une représentation paramétrique de la droite d'intersection de deux plans. Démontrer que les plans (P) et (P') sont sécants suivant 



Droites et plans de lespace

1.1.1 Équation cartésienne (Rappels). 1. Soient et deux réels non tous les deux nuls. ? Toute droite de vecteur normal #»(; ) a pour équation.



PRODUIT SCALAIRE DANS LESPACE

est orthogonale à deux droites sécantes de ce plan. 2) Déterminer une représentation paramétrique de leur droite d'intersection d.



VECTEURS DROITES ET PLANS DE LESPACE

2) Déterminer une représentation paramétrique de leur droite d'intersection d. 1) P et P' sont sécants si leurs vecteurs normaux ne sont pas colinéaires. Un 



Fiche 8 : Droites et plans dans lespace

sont aussi des représentations paramétriques de la droite (D). III - Intersection de deux plans système de deux équations linéaires. On considère un plan (P) d 



DROITES ET PLANS DE LESPACE

On obtient les points K et L et ainsi l'intersection cherchée. Théorème du toit : P1 et P2 sont deux plans sécants. Si une droite d1 de P1 est parallèle à une 



Droites et plans dans lespace

Le système est appelé représentation paramétrique de la droite 3. Démonstration. L'intersection de deux plans non parallèles est une droite.



REPRÉSENTATIONS PARAMÉTRIQUES ET ÉQUATIONS CARTÉSIENNES

I Représentation paramétrique d'une droite Propriété : L'espace est muni d'un repère !" ; ?(?)*?+ Soit une droite d passant par un point - ! /! 0! 1 et de vecteur directeur 2*?3 4 5 6 7 On a : 83 / 0 7?: Il existe un réel < tel que = =!+4< /=!+5< 0=0!+6< Remarque : Ce système s'appelle une représentation paramétrique



Droites et plans dans l'espace Terminale S - ac-noumeanc

Donner une représentation paramétrique de la droite (d) intersection de ces deux plans 2 Intersection d’un plan (P) et d’une droite (d) (d) est contenue dans (P) (d) est strictement parallèle à (P) (d) et (P) sont sécants en un point (d) (P 1) (P 2) (P) (d) x A (P 1) = (P 2) (P 1) (P 2) (d) (P) (d)



F033 Intersection de droites et de plans

On appelle représentation paramétrique de d le système x = x A + ta y = y A + tb z = z A + tc t ? R D une droite passant par A(x Ay Az A) de vecteur directeur ? u (abc) et d une droite passant par B(x By Bz B) de vecteur directeur ? v (def) ? D et d sont parallèles si et seulement si ? u et ? v sont colinéaires



F033 Intersection de droites et de plans - ac-dijonfr

On appelle représentation paramétrique de d le système x = x A + ta y = y A + tb z = z A + tc t ? R D une droite passant par A(x Ay Az A) de vecteur directeur ? u (abc) et d une droite passant par B(x By Bz B) de vecteur directeur ? v (def) ? D et d sont parallèles si et seulement si ? u et ? v sont colinéaires

Comment décrire la droite d’intersection entre deux plans ?

Une dernière façon de décrire la droite d’intersection entre deux plans consiste à utiliser une équation vectorielle.

Comment déterminer l’ensemble des équations paramétriques de la droite d’intersection ?

Pour déterminer l’ensemble des équations paramétriques de la droite d’intersection, nous devons définir une variable en fonction du paramètre, substituer cette expression dans les équations des plans, puis réarranger les équations résultantes pour trouver les expressions des deux autres variables en fonction du paramètre.

Quels sont les paramètres d’une droite ?

et on dit que t est le paramètre. Exercice 1 : Donner une représentation paramétrique de la droite passant par les points A ( -1 ; 2 ; -3) et B ( 1 ; -1 ; 1 ) . Le point C (1 ; 2 ; 3 ) appartient-il à la droite (AB) ? Dans l’espace, deux droites peuvent être : • Coplanaires (strictement parallèles, ou confondues, ou sécantes) • Non coplanaires

Quelle est la différence entre un plan et un intersection ?

Ils ont un seul point commun Leur intersection est une droite Leur intersection est un plan L'intersection de trois plans peut être : l'ensemble vide, un point, une droite ou un plan. (On pourra déterminer ces intersections en écrivant les systèmes formés avec les équations cartésiennes des plans.)

1

PRODUIT SCALAIRE

DANS L'ESPACE

I. Produit scalaire de deux vecteurs

1) Définition

Soit et deux vecteurs de l'espace. A, B et C trois points tels que et Il existe un plan P contenant les points A, B et C.

Définition :

On appelle produit scalaire de l'espace de et le produit égal au produit scalaire dans le plan P.

On a ainsi :

- si ou est un vecteur nul,

Exemple :

Vidéo https://youtu.be/vp3ICG3rRQk

ABCDEFGH est un cube d'arête a.

uvuAB=vAC=uv.uv.ABAC.0uv=uv .cos ;uvuv uv=´´ 2 uvAB DG ABAF ABAB a H 2

2) Propriétés

Les propriétés dans le plan sont conservées dans l'espace. Propriétés : Soit , et trois vecteurs de l'espace. - et sont orthogonaux.

Démonstration :

Il existe un plan P tel que les vecteurs et admettent des représentants dans P. Dans le plan, les règles de géométrie plane sur les produits scalaires s'appliquent.

3) Expression analytique du produit scalaire

Propriété : Soit et deux vecteurs de l'espace muni d'un repère orthonormé . Alors .

Et en particulier : .

Démonstration :

En effet, on a par exemple dans le plan définit par le couple : , et .

On a en particulier : .

Exemple :

Vidéo https://youtu.be/N1IA15sKH-E

On considère le repère de l'espace .

uvw 2 .uuu= ..uvvu = ...uvwu vuw +=+ ...kuvu kvk uv== kÎ.0uv=Ûuvuv x uy z x vy z ,,,Oijk .'''uvx xyy zz=++ 222
.uuuxyz==++ uvx iyj zkxiyjz k xxiixy ij xzi kyxjiy yjj yzj kzxkizyk jzzk k xxyyzz ;ij 2 .1iii== 2 .1jjj== ..0ijji == 2 222
.uuu xxy yzz xyz==++=++ ;,,CCBCDCG 3

Alors : et soit .

Alors .

Les vecteurs et ne sont pas orthogonaux.

II. Vecteur normal à un plan

1) Définition et propriétés

Définition : Un vecteur non nul de l'espace est normal à un plan P lorsqu'il est orthogonal à tout vecteur admettant un représentant dans P. Théorème : Un vecteur non nul de l'espace est normal à un plan P s'il est orthogonal à deux vecteurs non colinéaires de P.

Démonstration :

Elle est incluse dans la démonstration du corollaire qui suit. Au XIXe siècle, le vecteur normal , appelé produit vectoriel, est noté ⋀. Le produit vectoriel a été inventé par un mathématicien allemand, Hermann

Günther Grassmann (1809 ; 1877).

Corollaire : Une droite est orthogonale à toute droite d'un plan si et seulement si elle est orthogonale à deux droites sécantes de ce plan.

Démonstration (exigible BAC) :

- Si une droite est orthogonale à toute droite d'un plan P alors elle est en particulier orthogonale à deux droites sécantes de P. - Démontrons la réciproque : 1 1 1 CE 10 01 0,50 DI 1 1 0,5 DI .111110,50,5CEDI =´+´-+´= CE DI nnnuv 4 Soit une droite de vecteur directeur orthogonale à deux droites et de P sécantes et de vecteurs directeurs respectifs et . Alors et sont non colinéaires et orthogonaux au vecteur . Soit une droite quelconque () de P de vecteur directeur .

Démontrons que () est orthogonale à .

peut se décomposer en fonction de et qui constituent une base de P (car non colinéaires).

Il existe donc deux réels x et y tels que .

Donc , car est orthogonal avec et .

Donc est orthogonal au vecteur .

Et donc est orthogonale à ().

Méthode : Déterminer si un vecteur est normal à un plan

Vidéo https://youtu.be/aAnz_cP72Q4

ABCDEFGH est un cube.

Démontrer que le vecteur est normal au plan

(ABG).

On considère le repère .

Dans ce repère : ,,,,.

On a ainsi :

, et , donc : Donc est orthogonal à deux vecteurs non colinéaires de (ABG), il est donc normal à (ABG). Méthode : Déterminer un vecteur normal à un plan

Vidéo https://youtu.be/IDBEI6thBPU

Dans un repère orthonormé, soit et .

Déterminer un vecteur normal au plan (ABC).

d n 1 d 2 d uvuvn D w D d wuv wxuyv=+...0wnxu nyvn=+= nuvnw d D CF ;,,BBABC BF 1 0 0 A 0 0 0 B 0 1 0 C 0 0 1 F 0 1 1 G 0 1 1 CF 0 1 1 BG 1 0 0 AB .0011110 .0(1)10100 CFBG CFAB CF 11 2,3 21
AB 2 0 2 C 5

On a : et .

Soit un vecteur orthogonal au plan (ABC). Il est tel que : soit

Prenons par exemple, alors et .

Le vecteur est donc normal au plan (ABC).

2) Equation cartésienne d'un plan

Théorème : L'espace est muni d'un repère orthonormé . Un plan P de vecteur normal non nul admet une équation cartésienne de la forme , avec ℝ. Réciproquement, si a, b et c sont non tous nuls, l'ensemble des points tels que , avec ℝ, est un plan.

Démonstration (exigible BAC) :

- Soit un point de P. 2 1 3 AB 1 2 0 AC a nb c .0 .0 nAB nAC 230
20 abc ab 2230
2 330
2 2 bbc ab bc ab cb ab b=1 1c= a=2 2 1 1 n ;,,Oijk a nb c ax+by+cz+d=0 dÎ x My z ax+by+cz+d=0 dÎquotesdbs_dbs35.pdfusesText_40
[PDF] 4 types d'attachement

[PDF] bowlby attachement et perte pdf

[PDF] ainsworth attachement

[PDF] rapport jury capes interne anglais 2017

[PDF] equation parametrique exercice

[PDF] bowlby attachement livre

[PDF] théorie de l'attachement adulte

[PDF] rapport jury capes interne anglais 2013

[PDF] représentation paramétrique d'un segment

[PDF] equation parametrique droite dans le plan

[PDF] rapport jury agrégation interne espagnol 2014

[PDF] rapport jury agrégation externe lettres modernes 2003

[PDF] rapport jury agrégation externe lettres modernes 2007

[PDF] rapport jury agrégation externe lettres modernes 2004

[PDF] rapport jury agrégation lettres modernes 2004