[PDF] DROITES ET PLANS DE LESPACE On obtient les points K





Previous PDF Next PDF



REPRÉSENTATIONS PARAMÉTRIQUES ET ÉQUATIONS

1) Démontrer que la droite ( ) et le plan P sont sécants. 2) Déterminer leur point d'intersection. 1) Un vecteur normal de P est 7? ^. 2.



Droites et plans dans lespace

Démontrer que les deux plans sont sécants. Donner une représentation paramétrique de la droite (d) intersection de ces deux plans. 2. Intersection d'un plan 



Représentation paramétrique de droites de plans Applications

1.2 Intersection de deux droites . 2 Représentation paramétrique d'un plan de l'Espace ... 1 Représentations paramétriques d'une droite de l'Espace.



1 METHODES DE GEOMETRIE ANALYTIQUE DANS LESPACE

Méthode 18 : Déterminer une représentation paramétrique de la droite d'intersection de deux plans. Démontrer que les plans (P) et (P') sont sécants suivant 



Droites et plans de lespace

1.1.1 Équation cartésienne (Rappels). 1. Soient et deux réels non tous les deux nuls. ? Toute droite de vecteur normal #»(; ) a pour équation.



PRODUIT SCALAIRE DANS LESPACE

est orthogonale à deux droites sécantes de ce plan. 2) Déterminer une représentation paramétrique de leur droite d'intersection d.



VECTEURS DROITES ET PLANS DE LESPACE

2) Déterminer une représentation paramétrique de leur droite d'intersection d. 1) P et P' sont sécants si leurs vecteurs normaux ne sont pas colinéaires. Un 



Fiche 8 : Droites et plans dans lespace

sont aussi des représentations paramétriques de la droite (D). III - Intersection de deux plans système de deux équations linéaires. On considère un plan (P) d 



DROITES ET PLANS DE LESPACE

On obtient les points K et L et ainsi l'intersection cherchée. Théorème du toit : P1 et P2 sont deux plans sécants. Si une droite d1 de P1 est parallèle à une 



Droites et plans dans lespace

Le système est appelé représentation paramétrique de la droite 3. Démonstration. L'intersection de deux plans non parallèles est une droite.



REPRÉSENTATIONS PARAMÉTRIQUES ET ÉQUATIONS CARTÉSIENNES

I Représentation paramétrique d'une droite Propriété : L'espace est muni d'un repère !" ; ?(?)*?+ Soit une droite d passant par un point - ! /! 0! 1 et de vecteur directeur 2*?3 4 5 6 7 On a : 83 / 0 7?: Il existe un réel < tel que = =!+4< /=!+5< 0=0!+6< Remarque : Ce système s'appelle une représentation paramétrique



Droites et plans dans l'espace Terminale S - ac-noumeanc

Donner une représentation paramétrique de la droite (d) intersection de ces deux plans 2 Intersection d’un plan (P) et d’une droite (d) (d) est contenue dans (P) (d) est strictement parallèle à (P) (d) et (P) sont sécants en un point (d) (P 1) (P 2) (P) (d) x A (P 1) = (P 2) (P 1) (P 2) (d) (P) (d)



F033 Intersection de droites et de plans

On appelle représentation paramétrique de d le système x = x A + ta y = y A + tb z = z A + tc t ? R D une droite passant par A(x Ay Az A) de vecteur directeur ? u (abc) et d une droite passant par B(x By Bz B) de vecteur directeur ? v (def) ? D et d sont parallèles si et seulement si ? u et ? v sont colinéaires



F033 Intersection de droites et de plans - ac-dijonfr

On appelle représentation paramétrique de d le système x = x A + ta y = y A + tb z = z A + tc t ? R D une droite passant par A(x Ay Az A) de vecteur directeur ? u (abc) et d une droite passant par B(x By Bz B) de vecteur directeur ? v (def) ? D et d sont parallèles si et seulement si ? u et ? v sont colinéaires

Comment décrire la droite d’intersection entre deux plans ?

Une dernière façon de décrire la droite d’intersection entre deux plans consiste à utiliser une équation vectorielle.

Comment déterminer l’ensemble des équations paramétriques de la droite d’intersection ?

Pour déterminer l’ensemble des équations paramétriques de la droite d’intersection, nous devons définir une variable en fonction du paramètre, substituer cette expression dans les équations des plans, puis réarranger les équations résultantes pour trouver les expressions des deux autres variables en fonction du paramètre.

Quels sont les paramètres d’une droite ?

et on dit que t est le paramètre. Exercice 1 : Donner une représentation paramétrique de la droite passant par les points A ( -1 ; 2 ; -3) et B ( 1 ; -1 ; 1 ) . Le point C (1 ; 2 ; 3 ) appartient-il à la droite (AB) ? Dans l’espace, deux droites peuvent être : • Coplanaires (strictement parallèles, ou confondues, ou sécantes) • Non coplanaires

Quelle est la différence entre un plan et un intersection ?

Ils ont un seul point commun Leur intersection est une droite Leur intersection est un plan L'intersection de trois plans peut être : l'ensemble vide, un point, une droite ou un plan. (On pourra déterminer ces intersections en écrivant les systèmes formés avec les équations cartésiennes des plans.)

1

DROITES ET PLANS DE L'ESPACE

I. Positions relatives de droites et de plans

1) Positions relatives de deux droites

Propriété : Deux droites de l'espace sont soit coplanaires (dans un même plan) soit non coplanaires. d 1 et d 2 sont coplanaires d 1 et d 2 sont sécantes d 1 et d 2 sont parallèles d 1 et d 2 sont strictement parallèles d 1 et d 2 sont confondus 2 d 1 et d 2 sont non coplanaires

Exemple :

ABCDEFGH est un cube.

- Les droites (EG) et (FG) appartiennent au même plan (EFG) et sont sécantes en G. - Les droites (AD) et (FG) appartiennent au même plan (ADG) et sont parallèles. - Les droites (AD) et (CG) sont non coplanaires.

2) Positions relatives de deux plans

Propriété : Deux plans de l'espace sont soit sécants soit parallèles. P 1 et P 2 sont sécants P 1 et P 2 sont sécants suivant la droite d 3 P 1 et P 2 sont parallèles P 1 et P 2 sont strictement parallèles P 1 et P 2 sont confondus

Exemple :

ABCDEFGH est un parallélépipède

rectangle. - Les plans (BCG) et (BCE) sont sécants suivant la droite (BC). - Les plans (ABC) et (EFG) sont parallèles

3) Positions relatives d'une droite et d'un plan

Propriété : Une droite et un plan de l'espace sont soit sécants soit parallèles. 4 d et P sont sécants d et P sont sécants en un point I d et P sont parallèles d est incluse dans P d et P sont strictement parallèles

Exemple :

ABCDEFGH est un cube.

- La droite (GI) et le plan (ABC) sont sécants en I. - La droite (EG) est incluse dans le plan (EFG). - La droite (EG) et le plan (ABC) sont parallèles. 5

II. Parallélisme

1) Parallélisme d'une droite avec un plan

Propriété : Une droite d est parallèle à un plan P s'il existe une droite d' de P parallèle à d.

2) Parallélisme de deux plans

Propriété : Si un plan P contient deux droites sécantes d et d' parallèles à un plan P'

alors les plans P et P' sont parallèles.

2) Parallélisme de deux droites

Propriété : Si deux plans sont parallèles alors tout plan sécant à l'un est sécant à

l'autre et leurs intersections sont deux droites parallèles. 6

Méthode : Tracer l'intersection de deux plans

Vidéo https://youtu.be/4y00KbuCpsc

Construire l'intersection du plan (IMJ) avec le

cube ABCDEFGH. On construit la parallèle à (IJ) passant par M. En effet, les faces ABFE et DCGH sont parallèles donc le plan (IMJ) sécant à la face ABFE coupe la face DCGH en une droite parallèle à (IJ). De même, on trace la parallèle à (IM) passant par J. On obtient les points K et L et ainsi l'intersection cherchée.

Théorème du toit : P

1 et P 2 sont deux plans sécants.

Si une droite d

1 de P 1 est parallèle à une droite d 2 de P 2 alors la droite d'intersection de P 1 et P 2 est parallèle à d 1 et d 2 D 7

Méthode : Appliquer le théorème du toit

Vidéo https://youtu.be/TG-bVLDmAX4

ABCD est une pyramide. Le segment [FG]

est parallèle à l'arête [BC].

E est un point du plan (ABC).

Construire l'intersection du plan (EFG) avec

la pyramide. (BC) est une droite du plan (ABC) et (FG) est une droite du plan (EFG). Les droites (FG) et (BC) étant parallèles, on peut appliquer le théorème du toit pour en déduire que les plans (ABC) et (EFG) se coupent suivant une droite d passant par E et parallèle à (FG) et (BC). Cette droite coupe [AC] en H et [AB] en I. Il suffit enfin de tracer le quadrilatère FGHI : intersection du plan (EFG) avec la pyramide.

III. Orthogonalité

1) Orthogonalité de deux droites

Définition : Deux droites de l'espace sont orthogonales lorsque leurs parallèles passant par un point quelconque sont perpendiculaires. 8

Exemple :

ABCDEFGH est un cube.

- Les droites (EH) et (EF) sont perpendiculaires. - Les droites (BC) et (EF) sont orthogonales.

Remarques :

- Deux droites perpendiculaires sont coplanaires et sécantes. - Deux droites perpendiculaires sont orthogonales. La réciproque n'est pas vraie car deux droites orthogonales ne sont pas nécessairement coplanaires et sécantes.

2) Orthogonalité d'une droite et d'un plan

Propriété : Une droite d est orthogonale à un plan P si elle est orthogonale à deux droites sécantes de P. Propriété : Si une droite d est orthogonale à un plan P alors elle est orthogonale à toutes les droites de P. Démonstrations (exigible BAC) : Ces deux propriétés seront démontrées avec les outils vectoriels dans le chapitre "Produit scalaire dans l'espace".

Exemple :

ABCDEFGH est un cube.

(AE) est perpendiculaire aux droites (AD) et (AB). (AB) et (AD) sont sécantes et définissent le plan (ABC).

Donc (AE) est orthogonal au plan

(ABC). 9

3) Orthogonalité de deux plans

Propriété : Deux plans sont perpendiculaires lorsque l'un contient une droite orthogonale de l'autre. Méthode : Démontrer que des droites sont orthogonales

Vidéo https://youtu.be/qKWghhaQJUs

ABC est un triangle équilatéral. E est le point d'intersection de ses médianes. La droite d passant par E est orthogonale au plan (ABC). La pyramide ABCD est telle que D soit un point de la droite d.

Démontrer que les droites (BD) et (AC) sont

orthogonales.

La droite d est orthogonale au plan (ABC).

Comme la droite (AC) appartient au plan (ABC), la droite (AC) est orthogonale à la droite d. Par ailleurs, la droite (AC) est perpendiculaire à la droite (BE) car dans un triangle équilatéral, les médianes et les hauteurs sont confondues. Ainsi, (AC) est orthogonale à deux droites sécantes du plan (BED) : (BE) et d.

Donc (AC) est orthogonale au plan (BED).

La droite (BD) appartient au plan (BED) donc la droite (AC) est orthogonale à la droite (BD).quotesdbs_dbs35.pdfusesText_40
[PDF] 4 types d'attachement

[PDF] bowlby attachement et perte pdf

[PDF] ainsworth attachement

[PDF] rapport jury capes interne anglais 2017

[PDF] equation parametrique exercice

[PDF] bowlby attachement livre

[PDF] théorie de l'attachement adulte

[PDF] rapport jury capes interne anglais 2013

[PDF] représentation paramétrique d'un segment

[PDF] equation parametrique droite dans le plan

[PDF] rapport jury agrégation interne espagnol 2014

[PDF] rapport jury agrégation externe lettres modernes 2003

[PDF] rapport jury agrégation externe lettres modernes 2007

[PDF] rapport jury agrégation externe lettres modernes 2004

[PDF] rapport jury agrégation lettres modernes 2004