[PDF] Cours danalyse 1 Licence 1er semestre





Previous PDF Next PDF



Exercice 1 1) Montrer que 2 est un nombre irrationnel. 2) Montrer

3) En déduire qu'il e iste deu nombres réels irrationnels positifs et tels que soit rationnel. Exercice 2 Pour tous entiers. 1 et. 1 soit. () = 1.



Nombres réels

Page 2. Pascal Lainé. Exercice 7 : Démontrer que √3 + 2√6. 3 est un nombre irrationnel. Allez à : Correction exercice 7 : Exercice 8 : Montrer que = √7 + 



Les-ensembles-de-nombres-2nde.pdf

Exercice 1 : Indiquer dans chacun des cas



Corrigé du TD no 9

Par un raisonnement semblable à celui de l'exercice précédent on en déduit que la fonction x ↦→ cos - la somme d'un nombre rationnel et d'un nombre ...



Corrigé du TD no 11

Mais un est un nombre rationnel donc f(un) = g(un) pour tout n. Par unicité de la limite d'une suite



Chapitre 1 exercice 3 1. Vrai : la somme dun nombre rationnel et d

C'est une contradiction avec nos hypoth`eses (x2 était supposé irrationnel) ; on a donc obtenu une absurdité. 2. Faux : la somme de deux nombres irrationnels 



Exercices de mathématiques - Exo7

Montrer que. √. 2 ∈ Q. 3. En déduire : entre deux nombres rationnels il y a toujours un nombre irrationnel. Indication Τ. Correction Τ.



Fiche de révision1 : Les nombres réels

15 Exercice corrigé 12 (Ensemble borné calcul de sup



PCSI1-PCSI2 DNS n 3 Corrigé 2014-2015 Exercice 1 Pour tout

Exercice 1 Pour tout entier naturel n ≥ 1 (n ∈ N∗) on définit la fonction nombre irrationnel >>. 1. On commence par poser



Exercices de mathématiques - Exo7

nombre de parties de cardinal c dans E ∪F où E et F sont des ensembles ... irrationnel. On veut montrer que l'ensemble des valeurs de la suite (un). (ou (vn)) ...



Exercice 1 1) Montrer que 2 est un nombre irrationnel. 2) Montrer

3) En déduire qu'il e iste deu nombres réels irrationnels positifs et tels que soit rationnel. Exercice 2 Pour tous entiers. 1 et. 1 soit. () = 1.



Exercices du chapitre II avec corrigé succinct

Exercice II.15 Ch2-Exercice15. Montrer que les lois ”addition” et ”multiplication” ne sont pas des lois internes dans l'ensemble des nombres irrationnels.



Nombres réels

est un nombre irrationnel. Allez à : Correction exercice 7 : Exercice 8 : Montrer que = ?7 + 4?3 + ?7 



Exercices de mathématiques - Exo7

Montrer que. ?. 2 ? Q. 3. En déduire : entre deux nombres rationnels il y a toujours un nombre irrationnel. Indication ?. Correction ?.



Cours danalyse 1 Licence 1er semestre

1.3 Densité des rationnels et irrationnels . 7 Corrigé des exercices ... Théor`eme 1.3.2 L'ensemble des nombres irrationnels noté R Q est dense dans R ...



Exercices de mathématiques - Exo7

Exercice 1 I. Montrer que les nombres suivants sont irrationnels. 1. (**). ?. 2 et plus généralement n. ? m où n est un entier supérieur 



Corrigé du TD no 9

est une suite de nombres irrationnels qui décroît vers a donc l'intervalle. ]a



Chapitre 1 - Les fractions continues

avec un des plus cél`ebres nombres irrationnels : le nombre d'or. On montrera `a l'exercice 1.5 que cette suite convergera vers le nombre d'or.



17 exercices de bon niveau sur les nombres réels

est un nombre irrationnel. Exercice 14 [ Corrigé ]. Soient a b



Propriétés de R 1 Les rationnels Q 2 Maximum minimum

http://math.univ-lille1.fr/~bodin/exo4/selcor/selcor09.pdf



Nombres réels - licence-mathuniv-lyon1fr

Exercice 7 : Démontrer que ?3+2?6 3 est un nombre irrationnel Allez à : Correction exercice 7 : Exercice 8 : Montrer que =?7+4?3+?7?4?3 est un nombre entier Allez à : Correction exercice 8 : Exercice 9 : Soit =?4?2?3+?4+2?3



Calculs algébriques - Claude Bernard University Lyon 1

Exercice 11 : Soit =?4?2 ?3??4+23 Calculer Allez à : Correction exercice 11 : Exercice 12 : On rappelle que ?2 est irrationnel (c’est-à-dire que ?2????) 1 ?Montrer que =6+42 et =6?4?2 sont irrationnels 2 ?Calculer 3 ?Montrer que +? est rationnel Allez à : Correction exercice 12 : Exercice 13 :



Analyse1 Fiche de TD 1 : Les nombres réels - univ-tlemcendz

Fiche de TD 1 : Les nombres réels Exercice 1 On rappelle que p 2 est irrationnel 1) Montrer que a = 6+4 p 2 et b = 6 4 p 2 sont irrationnels 2) Calculer p ab: 3) Montrer que p a+ p b est rationnel Exercice 2 On suppose que p 2; p 3 et p 6 sont irrationnels Montrer que 1) p 2+ p 3 est irrationnel 2) p 2+ p 3+ p 6 est irrationnel



CORRIGE I Nombres entiers rationnels et irrationnels

Un nombre irrationnel est un nombre dont la partie décimale est illimitée non périodique I 2 Intervalles fermés et ouverts Certains sous-ensembles des nombres réels sont très souvent utilisés ce sont les intervalles

Comment calculer les réels algébriques ?

Calculs algébriques Exercice 1 : Si ? et ? sont des réels positifs ou nuls, montrer que ??+????2??+? Allez à : Correction exercice 1 : Exercice 2 : Montrer que pour tous réels ? et ? strictement positifs 2 1 ? + 1 ? ???? Allez à : Correction exercice 2 : Exercice 3 : Montrer que pour tout réels non nuls ? et ? : 2|?||?| ?2+?2

Comment montrer qu'un sous-groupe est irrationnel ?

On pourra utiliser que si q est un rationnel non nul, alors ?2q est un irrationnel. Soit H un sous-groupe de (R, +) non réduit à {0}. On cherche à prouver que, soit H est dense dans R, soit il existe ? > 0 tel que H = ?Z. Pour cela, on pose G = H ?]0, + ?[ . Montrer que G admet une borne inférieure ? dans R + .

Comment démontrer que les réels sont irrationnels?

(Facultatif) Démontrer que les réels suivants sont irrationnels. 1) p a+ p b; où a et b sont des entiers positifs tels que p a et p b sont irrationnels. 2) p 2+ p 3+ p 5: Exercice 8.

Comment calculer les nombres réels ?

Déterminer les nombres réels y solution des inéquations suivantes : 1. (y + 1)(y ? 1) > (y + 1)2 2. ?y + 7 ? 3y ? 5?, ? ? R donné. Exercice 4 - Une équation avec des racines carrées [Signaler une erreur] [Ajouter à ma feuille d'exos] Déterminer les réels x tels que ?2 ? x = x. Résoudre l'inéquation x ? 1 ? ?x + 2.

Cours d"analyse 1

Licence 1er semestre

Guy Laffaille

Christian Pauly

janvier 2006 2

Table des mati`eres

1 Les nombres r´eels et complexes 5

1.1 Nombres rationnels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

1.2 Nombres r´eels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

1.3 Densit´e des rationnels et irrationnels . . . . . . . . . . . . . . . . . . . . . . . . .11

1.4 Nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

1.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

2 Logique et langage des ensembles 15

2.1 Propositions et op´erateurs logiques . . . . . . . . . . . . . . . . . . . . . . . . . .15

2.2 Quantificateurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

2.3 Techniques de d´emonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

2.3.1 R´ecurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

2.3.2 Contrapos´ee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

2.3.3 D´emonstration par l"absurde . . . . . . . . . . . . . . . . . . . . . . . . . .18

2.4 Langage des ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

2.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

3 Suites r´eelles et complexes 21

3.1 Limite d"une suite r´eelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

3.2 Propri´et´es de la limite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

3.3 Suites adjacentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

3.4 Comparaison de suites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

3.5 Suites complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

3.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

4 Fonctions d"une variable r´eelle 39

4.1 Limite et continuit´e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

4.2 Propri´et´es de la limite d"une fonction . . . . . . . . . . . . . . . . . . . . . . . . .41

4.3 Propri´et´es des fonctions continues . . . . . . . . . . . . . . . . . . . . . . . . . . .42

4.4 Fonctions d´erivables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

4.5 Propri´et´es des fonctions d´erivables . . . . . . . . . . . . . . . . . . . . . . . . . . .47

4.6 Application aux suites r´eelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48

4.7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

5 D´eveloppements limit´es 55

5.1 Comparaison de fonctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

5.2 Formules de Taylor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

5.3 Calcul de d´eveloppements limit´es . . . . . . . . . . . . . . . . . . . . . . . . . . .59

5.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

3

4TABLE DES MATI`ERES6 Fonctions classiques 63

6.1 Fonctions bijectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

6.2 Logarithme et exponentielle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

6.3 D´eveloppements limit´es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

6.4 Fonctions trigonom´etriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

7 Corrig´e des exercices 69

Remerciements.

Merci `a Thierry Mignon, Vladimir Verchinin, Julien Munier, Denis Trotabas et Daniel Maerten pour les exercices de TD. Merci `a Michele Bolognesi pour la r´edaction de quelques corrig´es d"exercices. Merci `a Ivan Babenko pour la preuve de l"irrationnalit´e du nombre d"Euler.

Chapitre 1

Les nombres r´eels et complexes

1.1 Nombres rationnels

On d´esigne parNl"ensemble des entiers naturels

N={0,1,2,3,...}.

Comme chaque entier naturelnadmet un successeurn+ 1, on se convainc sans peine queNest un ensemble infini. On noteN?l"ensembleN\{0}, c"est-`a-dire l"ensemble des entiers naturels non nuls. ´Etant donn´e deux entiers naturelsxetyon sait d´efinir les nombres x+y,x-y,x·yetxy ,siy?= 0.

On remarque que l"addition et la multiplication sont des op´erations qui ont leur r´esultat dansN.

Par contre le r´esultat d"une soustraction ou d"une division n"est pas toujours un entier naturel.

On cr´ee ainsi de nouveaux nombres

Z={...,-3,-2,-1,0,1,2,3,...},

l"ensemble des entiers relatifs - on noteraZ?=Z\ {0}- et Q=?ab |a?Zetb?Z?? l"ensemble des nombres rationnels dans lequel on identifie la fraction ab aveca·nb·npour touta?Z etb,n?Z?.

On a bien entendu les inclusions suivantes

N?Z?Q

et les quatre op´erations ´el´ementaires +,-,·et/peuvent s"´etendre `a l"ensembleQdes nombres

rationnels. Les Grecs classiques ont cru longtemps que toutes les quantit´es s"exprimaient par des nombres rationnels. Ils se sont aper¸cu que ce n"est pas toujours le cas. En effet on peut construire des nombres qui ne sont pas rationnels. Consid´erons par exemple un triangleABCrectangle enA5

6CHAPITRE 1. LES NOMBRES R´EELS ET COMPLEXESABC

b caSi on noteala longueur du segmentBC,bcelle deCAetccelle deAB, alors le th´eor`eme de

Pythagore dit qu"on a la relation

a

2=b2+c2.

Ainsi on obtient que la longueur de la diagonale d"un carr´e de cˆot´eb=c= 1 est ´egale `aa=⎷2.

Proposition 1.1.1Le nombre

⎷2n"est pas un nombre rationnel. D´emonstration.Nous allons faire une d´emonstration par l"absurde.1 Supposons que⎷2 est rationnel. Il existe alors deux entiers positifsa,btels que⎷2 =a/b. Si aetbsont pairs, on peut simplifier la fractiona/bpar 2. En simplifiant par 2 autant que possible, on arrive au cas o`u au moins un des deux entiersaoubestimpair.

En ´elevant au carr´e l"´egalit´e⎷2 =a/bet en chassant le d´enominateur, on arrive `a

2b2=a2.

Donca2est pair. Siaest impair, on peut ´ecrirea= 2a?+ 1, alorsa2= 4a?2+ 4a?+ 1 qui est impair. On en d´eduit donc queaestpair, donc on peut ´ecrirea= 2a?, ce qui donne 2b2= 4a?2et en simplifiant par 2, on obtient b

2= 2a?2.

C"est la mˆeme ´equation que ci-dessus aveca?`a la place debetb`a la place dea. Le mˆeme raisonnement montre alors quebest aussipair. On a donc une contradiction et⎷2 ne peut pas ˆetre rationnel.Voici d"autres exemples de nombres irrationnels.

1.Le nombreπ= 3,1415...d´efini comme la circonf´erence d"un cercle de diam`etre 1.2.Le nombre d"Eulere= 2,718..., la base de l"exponentielle, d´efini comme somme infinie2

e= 1 +11! +12! +13! +···+1k!+···3.Les racines carr´es ⎷nsinest un entier qui n"est pas un carr´e, c"est-`a-dire qui n"est pas de la formen=k2aveck?N.Proposition 1.1.2Le nombre d"Euleren"est pas un nombre rationnel.1 voir section 2.3.3

2Par d´efinitionn! = 1·2·3···n

1.2. NOMBRES R

´EELS7D´emonstration.Comme pour⎷2 nous allons faire une d´emonstration par l"absurde. Supposons

donc queeest rationnel. Il existe alors deux entiersa,b?N?tels que e=ab = 1 +11! +12! +13! +···+1n!+··· Multiplions parb!. Alors on obtient l"´egalit´e ab b!-? b! +b! +b!2! +b!3! +···+b!b!?

1b+ 1+1(b+ 1)(b+ 2)+1(b+ 1)(b+ 2)(b+ 3)+···+1(b+ 1)(b+ 2)···(b+n)+···

Il est clair que tous les termes de la somme `a gauche sont des nombres entiers, donc la somme, qu"on noteras, est aussi un entier. En utilisant la minoration (b+ 1)(b+ 2)···(b+n)>(b+ 1)n on obtient un l"encadrement suivant des

0< s <1b+ 1+1(b+ 1)2+1(b+ 1)3+···+1(b+ 1)n+···.

Cette derni`ere somme infinie vaut

1b+1·11-1b+1=1b

d"apr`es la formule donnant la somme d"une s´erie g´eom´etrique (voir (1.1)). Ainsi on obtient l"encadrement

0< s <1b

ce qui contreditsentier.La preuve de l"irrationalit´e deπet d´epasse largement le cadre de ce cours. Nous renvoyons par

exemple au livre "Autour du nombreπ" de Pierre Eymard et Jean-Pierre Lafon.

Par contre l"irrationalit´e de

⎷nse montre de la mˆeme fa¸con que celle de⎷2 (exercice).

1.2 Nombres r´eels

La proposition 1.1.1 dit que

⎷2 n"est pas rationnel, c"est-`a-dire ne peut pas s"´ecrire comme

quotient de deux entiers. Cependant nous savons que le nombre⎷2 peut s"´ecrire sous forme d"un

d´eveloppement d´ecimalinfini⎷2 = 1,41421356...

Dans ce cours nous prenons cette repr´esentation d´ecimale comme d´efinition d"un nombre r´eel.D´efinition 1.2.1 (nombre r´eel)Un nombre r´eel est une collection de chiffres{c0,...,cm}et

{d1,d2,...}compris entre0et9. Les chiffrescisont en nombre fini et les chiffresdjpeuvent ˆetre

en nombre infini. On fait correspondre `a cette collection le nombre donn´e par le d´eveloppement

d´ecimal x=cmcm-1...c1c0,d1d2d3...dn....

Exemples.

8CHAPITRE 1. LES NOMBRES R´EELS ET COMPLEXES1.Les d´ecimales du nombreπsont

c

0= 3, d1= 1, d2= 4, d3= 1,....2.S"il n"y a qu"un nombre fini de d´ecimalesdjnon nulles, alors le r´eelxest un rationnel et

x=cm10m+cm-110m-1+···+c110 +c0+d110-1+···+dn10-n

(xest rationnel, car c"est une somme de rationnels).3.Un nombre rationnel admet un d´eveloppement d´ecimal, donc est r´eel. On a

13

= 0,3333...(que des 3)Th´eor`eme 1.2.1Un nombre r´eel est rationnel si et seulement si son d´eveloppement d´ecimal est

p´eriodique `a partir d"un certain rang. Nous admettons ce r´esultat. On peut se convaincre que c"est vrai en effectuant une division de

deux entiers (3/7 par exemple) et en constatant qu"il n"y a qu"un nombre fini de possibilit´es pour

les restes, donc ¸c`a boucle.

Remarques.1.Cette d´efinition nous suffira pour ce cours mais elle n"est pas tr`es satisfaisante. D"abord un

nombre r´eel peut avoir deux d´eveloppements d´ecimaux distincts. Par exemple 1 = 0,9999... (toujours des 9). On peut pour s"en convaincre ´ecrire

0,9999···=910

1 +110

+···+110 n···? On voit qu"on a affaire `a un progression g´eom´etrique et on peut utiliser la formule donnant la somme d"une s´erie g´eom´etrique

11-a= 1 +a+a2+···+an+···(1.1)

vraie pour tout r´eelatel que|a|<1 (ici on prenda=110

.)2.Cette d´efinition fait r´ef´erence au nombre 10. On peut prendre une autre base de num´eration,

ce qui donnerait une d´efinition ´equivalente d"un nombre r´eel.3.Les op´erations addition, multiplication,... ne sont pas si faciles que l"on pourrait le penser

`a cause du probl`eme des retenues.4.Il existe des constructions plus intrins`eques de l"ensemble des r´eels. Ces constructions d´epassent

le cadre de ce cours.5.Il est impossible de d´efinir rigoureusement le nombreπpar son d´eveloppement d´ecimal. Il

faudrait un temps et un espace infini pour calculer TOUTES les d´ecimales deπ! Donner une

valeur approch´ee (utilis´ee dans le calcul num´erique) d"un nombre r´eel, aussi bonne qu"elle

soit, n"est pas une d´efinition au sens math´ematique. L"ensemble des r´eels sera not´eRet l"on a les inclusions

N?Z?Q?R.

On notera tr`es souventR?l"ensemble des r´eels non nuls. r´eels.

1.2. NOMBRES R

´EELS9D´efinition 1.2.2 (majorant, minorant, partie born´ee)

siAa un minorant.3.Si la partieAest major´ee et minor´ee, on dit queAestborn´ee.D´efinition 1.2.3 (intervalle, segment)

aussi que[a,b]est un segment.2.On note]a,b[l"ensemble des r´eelsxtels quea < x < b. C"est un intervalleouvert.

On d´efinit de mˆeme les intervalles mixtes ou semi-ouverts [a,b[ et ]a,b]. On introduit aussi le

Exemples.-1,23,πsont des majorants du segmentA= [0,1]. 1 est un majorant deA= [0,1[.-L"intervalle [a,+∞[ n"a pas de majorant.Th´eor`eme 1.2.2 (Propri´et´e d"Archim`ede)Soientxetydeux r´eels>0, alors il existe un

entierntel queny > x.

Nous ne d´emontrons pas cette propri´et´e. Elle dit qu"en faisant assez de pas de longueuryon

d´epassex. D"ailleurs avec notre d´efinition des r´eels la propri´et´e d"Archim`ede est ´evidente, ce qui

est loin d"ˆetre le cas quand on d´efinit un nombre r´eel de mani`ere intrins`eque.D´efinition 1.2.4 (borne sup´erieure, borne inf´erieure)SoitAune partie non vide deR(ou

le minimum de l"ensemble des majorants deAetborne inf´erieuredeAle maximum de l"ensemble des minorants deA.

Avant d"´enoncer le th´eor`eme d"existence de la borne sup´erieure dansR, montrons que la borne

sup´erieure n"existe pas toujours. On se place dansQmuni de l"ordre naturel.Proposition 1.2.1Consid´erons la partieA={x?Q|x2<2}. AlorsAn"a pas de borne

sup´erieure dansQ. D´emonstration.SoitMun majorant deAdansQ. Il y en a : 2,127 en sont. Posons M ?=M2+ 22M. Nous allons v´erifier queM?est un autre majorant (dansQ) et queM?< M, ce qui prouve qu"il n"y a pas de plus petit majorant. Montrons queM?est un majorant : il suffit de voir queM?2>2. On calcule M ?2-2 =(M2+ 2)24M2-2 =M4-4M2+ 44M2=(M2-2)24M2

10CHAPITRE 1. LES NOMBRES R´EELS ET COMPLEXESqui est bien strictement positif. En effetM2-2?= 0, car sinon⎷2 serait rationnel (voir proposition

1.1.1).

V´erifions queM?< M. On calcule

M-M?=M-M2+ 22M=M2-22M

qui est bien strictement positif puisqueMest un majorant rationnel deA. On peut aussi tracer le graphe de la fonction qui donneM?en fonction deM y=x2+ 22x C"est une hyperbole de centre l"origine, d"asymptotex= 0 ety=x/2 qui coupe la premi`ere

bissectrice au point (⎷2,⎷2) o`u on a une tangente horizontale. On voit alors imm´ediatement sur

le dessin que⎷2< M?< Msi on a prisM >⎷2.MM0p2Remarque. Le choix de la fonctionfqui d´efinitM?=f(M) n"est pas essentiel. Ici on a choisif(x) =x2+22x, mais n"importe quelle fonction rationnelle (=quotient de deux polynˆomes) satisfaisant aux trois conditions (1)f(⎷2) =

aurait pu servir dans la preuve pr´ec´edente. Ceci sera expliqu´e en d´etail un peu plus tard (section

4.6).Th´eor`eme 1.2.3SoitAune partie non vide deR.1.SiAest major´ee, alorsAadmet une borne sup´erieure, not´eesupA.2.SiAest minor´ee, alorsAadmet une borne inf´erieure, not´eeinfA.

Nous admettons ce th´eor`eme.

Exemples.-On a sup[0,1] = 1 et sup[0,1[ = 1.-On a sup{x?Q|x2<2}=⎷2 mais comme partie deQon vient de voir que cette partie

n"a pas de borne sup´erieure.

1.3. DENSIT

´E DES RATIONNELS ET IRRATIONNELS111.3 Densit´e des rationnels et irrationnels D´efinition 1.3.1 (densit´e)SoitAune partie deR. On dit queAestdensedansRsiArencontre tout intervalle ouvert]a,b[aveca < b.Th´eor`eme 1.3.1L"ensembleQest dense dansR. D´emonstration.Soita,bdeux r´eels tels quea < b. Il s"agit d"exhiber un rationnelp/qtel que a < p/q < b.

En appliquant la propri´et´e d"Archim`ede (th´eor`eme 1.2.2), on voit qu"il existe un entierqtel

quotesdbs_dbs35.pdfusesText_40
[PDF] irrationalité de sqrt n

[PDF] filière st2s programme

[PDF] filière st2i

[PDF] démontrer par l'absurde que racine de 3 est irrationnel

[PDF] filière st2s lycée

[PDF] filière stl

[PDF] filiere st2s metier

[PDF] filière std2a

[PDF] filière st2s débouchés

[PDF] influence photographie peinture

[PDF] filière stav

[PDF] peinture et photographie les enjeux d'une rencontre

[PDF] relation entre peinture et photographie

[PDF] lycée guillaume apollinaire nice

[PDF] le but de cet exercice est d'étudier les suites de termes positifs dont le premier terme u0