[PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES





Previous PDF Next PDF



[PDF] suites arithmetiques et suites geometriques

19 juin 2011 Démonstration : La suite arithmétique (un) de raison r et de premier terme u0 vérifie la relation . En calculant les premiers termes : … .



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Si le premier terme est égal à 3 les premiers termes successifs sont : u0 = 3



casio graph 35+ - Suites

Suites. Prise en main des menus suites. CASIO. GRAPH 35+ ? On considère la suite u arithmétique de premier terme u0 = −4 et de raison 08 et la suite v 



suites arithmétiques

Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3. La suite est donc définie par : = 3. M = + 5 b) Soit 



Suites

On a vu comment calculer les termes d'une suite arithmétique. On voudrait maintenant pouvoir la somme des premiers termes. Par exemple si wn est la suite 



les suites mathématiques dans lart contemporain

11 avr. 2023 de simples suites arithmétiques ou géométriques à des suites particulières comme la suite ... suite arithmétique de raison nulle donc une suite ...



Soit (u n ) la suite arithmétique de premier terme u0 = − 4 et de

SUITES. Suites arithmétiques. CASIO. GRAPH 35+ ? Soit (u n ) la suite arithmétique de premier terme u0 = − 4 et de raison 2. a ) Calculer u10 et u172 b 



Corrigé du Contrôle Continu no 1

Exercice 2. Soit (un)n∈N la suite arithmétique telle que u6 = 224 et u14 = 112. 1. Déterminer la raison r puis le terme initial u0 de (un)n∈N.



Les séries statistiques arithmétiques et géométriques

15 nov. 2018 D'où la médiane égale à la moyenne arithmétique dans le cas où les éléments d'une série statistique sont des termes consécutifs d'une suite ...



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Si le premier terme est égal à 3 les premiers termes successifs sont : u0 = 3



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Suites arithmétiques. 1) Définition. Exemples : a) Considérons une suite numérique (un) où la différence entre un terme et son précédent reste constante et 



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Si le premier terme est égal à 3 les premiers termes successifs sont : u0 = 3



Première ES - Suites arithmétiques

Suites arithmétiques. I) Définition: Soit un nombre un entier naturel. Soit une suite. On dit qu'elle est arithmétique si partant du. TERME INITIAL.



Suites

2.2 Calcul des termes d'une suite arithmétique. On considère une suite arithmétique de premier terme un0 et de raison r. On veut calculer le terme d'indice 



SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES

Si le premier terme est égal à 3 les premiers termes successifs sont : u0 = 3



Modèle mathématique.

1 ) SUITES ARITHMÉTIQUES. A ) D É FINITION PAR RÉ CURRENCE. Définition : On dit qu'une suite un est une suite arithmétique s'il existe un réel r tel 



SUITES ARITHMETIQUES

SUITES ARITHMETIQUES. Commentaire : Comprendre et modifier des algorithmes permettant de calculer des termes d'une suite arithmétique et la somme des termes 



Chapitre 3 - Suites arithmétiques et géométriques

Suites arithmétiques et géométriques. 3.1 Notion de suite une suite numérique est une succession de nombres réels chacun étant un terme de la suite.



Formules concernant les suites arithmétiques et les suites

terme est u12 si le premier terme est noté u1. 5°) Formule permettant de calculer la somme des n premiers termes d'une suite arithmétique : a) S = nombre 



[PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Propriété : (un) est une suite arithmétique de raison r et de premier terme u0 Pour tout entier naturel n on a : u n = u 0 + nr Démonstration 



[PDF] SUITES ARITHMÉTIQUES - maths et tiques

Définition : Une suite ( ) est une suite arithmétique s'il existe un nombre tel que : M = + Le nombre est appelé raison de la suite Partie 2 



[PDF] 1 ) suites arithmétiques - Pierre Lux

La somme de termes consécutifs d'une suite arithmétique est égale au produit du nombre de termes par la demi-somme des termes extrêmes S = nombre de termes ×



[PDF] Suites arithmétiques Suites géométriques - AlloSchool

Suites géométriques Définition Définition • (un) est une suite arithmétique si et seulement si il existe un réel r tel que pour tout entier naturel n



[PDF] Première S - Suites arithmétiques - Parfenoff org

Cet algorithme permet d'obtenir les premiers termes d'une suite arithmétique • Déclaration des variables : i n entiers ; u r réels ;



[PDF] Chapitre 2: Suites arithmétiques et suites géométriques

Exemple : Pour une suite géométrique a3 = 5 et a6 = -40 Calculer a8 Page 9 CHAPITRE 2 SUITES ARITHMETIQUES ET GEOMETRIQUES 21



[PDF] Suites arithmétiques et suites géométriques - dpernoux

terme est u12 si le premier terme est noté u1 5°) Formule permettant de calculer la somme des n premiers termes d'une suite arithmétique : a) S = nombre 



[PDF] Suites arithmétiques et géométriques - Exercices - Devoirs

a Démontrer que la suite (vn) est une suite géométrique dont on précisera le premier terme et la raison b Donner l' 



[PDF] Suites arithmétiques et géométriques - Fiche de cours

Le nombre r est appelé raison de la suite Propriété 1: (un) est une suite arithmétique de raison r et de premier terme u0 si pour tout entier naturel n 



[PDF] Suites - Cours - Lycées Jean Lurçat

I - Les suites arithmétiques Définition Une suite numérique ( )n u est arithmétique s'il existe un nombre r appelé raison de la suite

  • Quelle est la formule générale d'une suite arithmétique ?

    Le terme général d'une suite arithmétique (Un) est donné par la formule suivante: Un = Up + (n-p)×r (où Up est le terme initial). Cas particulier si U0 est le terme initial, alors Un=U0+nr. Toute suite arithmétique est caractérisée par sa raison r et son premier terme.
  • Comment calculer une suite arithmétique exemple ?

    Exemple : Considérons une suite numérique (un) où la différence entre un terme et son précédent reste constante et égale à 5. Si le premier terme est égal à 3, les premiers termes successifs sont : u0 = 3, u1 = 8, u2 = 13, u3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3.
  • Comment justifier que la suite est arithmétique ?

    Pour montrer qu'une suite est arithmétique, il faut démontrer que la différence entre deux termes successifs est une constante. Pour cela, il ne suffit pas de vérifier si la différence entre quelques termes successifs est constante : il est nécessaire de démontrer que u n + 1 ? u n est une constante, pour tout .
  • Sn = a + a + r + + a + r × ( n ? 2 ) + a + r × ( n ? 1 ). Nous trouvons ainsi la règle suivante : La somme de n termes consécutifs d'une suite arithmétique est égale à la demi-somme des premier et dernier termes, multipliée par le nombre de termes.

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frSUITES ARITHMETIQUES ET SUITES GEOMETRIQUES Vidéo https://youtu.be/pHq6oClOylU I. Suites arithmétiques 1) Définition Exemples : a) Considérons une suite numérique (un) où la différence entre un terme et son précédent reste constante et égale à 5. Si le premier terme est égal à 3, les premiers termes successifs sont : u0 = 3, u1 = 8, u2 = 13, u3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3. La suite est donc définie par : 0

1 3 5 nn u uu

. b) Soit la suite numérique (vn) de premier terme 5 et de raison -2. Les premiers termes successifs sont : v0 = 5, v1 = 5 - 2 = 3, v2 = 3 - 2 = 1, v3 = 1 - 2 = -1. La suite est donc définie par :

v 0 =5 v n+1 =v n -2

. Définition : Une suite (un) est une suite arithmétique s'il existe un nombre r tel que pour tout entier n, on a : 1nn

uur

. Le nombre r est appelé raison de la suite. 2) Variations Propriété : (un) est une suite arithmétique de raison r. - Si r > 0 alors la suite (un) est croissante. - Si r = 0 alors la suite (un) est constante. - Si r < 0 alors la suite (un) est décroissante.

2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frDémonstration :

u n+1 -u n =u n +r-u n =r . - Si r > 0 alors u n+1 -u n >0 et la suite (un) est croissante. - Si r < 0 alors u n+1 -u n <0 et la suite (un) est décroissante. Exemple : La suite arithmétique (un) définie par u n+1 =u n -4 et u 0 =5

est décroissante car de raison négative et égale à -4. 3) Représentation graphique Les points de la représentation graphique d'une suite arithmétique sont alignés. Exemple : On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4. II. Suites géométriques 1) Définition Exemples : a) Considérons une suite numérique (un) où le rapport entre un terme et son précédent reste constant et égale à 2. Si le premier terme est égal à 5, les premiers termes successifs sont : u0 = 5, u1 = 10, u2 = 20, u3 = 40. Une telle suite est appelée une suite géométrique de raison 2 et de premier terme 5. La suite est donc définie par :

u 0 =5 u n+1 =2u n b) Soit la suite numérique (vn) de premier terme 4 et de raison 0,1.

3YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frLes premiers termes successifs sont : v0 = 4 v1 = 0,1 x 4 = 0,4 v2 = 0,1 x 0,4 = 0,04 v3 = 0,1 x 0,04 = 0,004 La suite est donc définie par :

v 0 =4 v n+1 =0,1×v n

. Définition : Une suite (un) est une suite géométrique s'il existe un nombre q, strictement positif, tel que pour tout entier n, on a :

u n+1 =q×u n

. Le nombre q est appelé raison de la suite. Exemple concret : On place un capital de 500€ sur un compte dont les intérêts annuels s'élève à 4%. Chaque année, le capital est multiplié par 1,04. Ce capital suit une progression géométrique de raison 1,04. On a ainsi : u

1 =1,04×500=520 u 2 =1,04×520=540,80 u 3 =1,04×540,80=562,432

De manière générale : u

n+1 =1,04×u n avec u 0 =500

2) Variations Propriété : (un) est une suite géométrique de raison q et de premier terme u0 strictement positif. - Si q > 1 alors la suite (un) est croissante. - Si q = 1 alors la suite (un) est constante. - Si 0 < q < 1 alors la suite (un) est décroissante. Exemple : La suite géométrique (un) définie par

u 0 =5 u n+1 =0,5u n est décroissante car la raison est strictement inférieure à 1.

4YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr RÉSUMÉS (un) une suite arithmétique - de raison r - de premier terme u0 Exemple : r=-0,5

et u 0 =4

Définition

u n+1 =u n +r u n+1 =u n -0,5

La différence entre un terme et son précédent est égale à -0,5. Variations Si r > 0 : (un) est croissante. Si r < 0 : (un) est décroissante. r=-0,5<0

La suite (un) est décroissante. Représentation graphique Remarque : Les points de la représentation graphique sont alignés. (un) une suite géométrique - - de raison q > 0 - de premier terme u0 > 0 Exemple : q=0,5

et u 0 =5

Définition

u n+1 =q×u n u n+1 =0,5×u n

Le rapport entre un terme et son précédent est égal à 0,5. Variations Si q > 1 : (un) est croissante. Si 0 < q < 1 : (un) est décroissante. q=0,5<1

La suite (un) est décroissante. Représentation graphique Remarque : Si q < 0 : la suite géométrique n'est ni croissante ni décroissante. Horsducadredelaclasse,aucunereproduction,mêmepartielle,autresquecellesprévuesàl'articleL122-5ducodedelapropriétéintellectuelle,nepeutêtrefaitedecesitesansl'autorisationexpressedel'auteur.www.maths-et-tiques.fr/index.php/mentions-legales

quotesdbs_dbs23.pdfusesText_29
[PDF] exercice code barre terminale s

[PDF] exercices d arithmétique corrigés

[PDF] arithmétique exercices corrigés pdf

[PDF] exo7 arithmétique

[PDF] rencontre arles 2017

[PDF] programme arles 2017

[PDF] luma arles

[PDF] forum d'arles

[PDF] arles monuments romains

[PDF] arelate

[PDF] qui a fondé arles

[PDF] amphithéâtre d'arles

[PDF] arles antique plan

[PDF] les philosophe des lumiere et le combat contre l'injustice

[PDF] armstrong je ne suis pas noir original