[PDF] FONCTION INVERSE Comportement de la fonction inverse





Previous PDF Next PDF



FONCTION INVERSE I) Présentation

en 0. La fonction f est définie pour tout réel non nul : l'ensemble de définition de f est ]?? ; 0[ U ]0 



FONCTION INVERSE

Comportement de la fonction inverse aux bornes de son ensemble de définition. 1) En +?. On s'intéresse aux valeurs de ( ) lorsque x devient de plus en 



Fonctions trigonométriques réciproques

A condition de restreindre judicieusement leurs ensembles de définition on peut définir des fonctions sa fonction réciproque appelée arc sinus ainsi :.



Fonction inverse et étude de quotients classe de seconde

21 mai 2017 Définition : on appelle valeur interdite d'une fonction f donnée tout réel x n'appar- tenant pas à l'ensemble ...



FONCTIONS DE REFERENCE

Définitions : Soit f une fonction définie sur un intervalle I. Définition : La fonction inverse est la fonction f définie sur R { }0 par f (x) =.



2.2 Graphe dune fonction numérique – définition 2.3 Réciproque

A un sous-ensemble de Df on appelle restriction de f à A la fonction notée f



2.5.4 Compléments (fonctions trigonométriques inverses)

On définit alors son inverse arcsin:[ ?1



GENERALITES SUR LES FONCTIONS

Pour une fonction f(x) donnée on appelle ensemble de définition Autrement dit



Intégrales de fonctions de plusieurs variables

Toute fonction continue d'une variable f admet des primitives. De plus (sur tout intervalle contenu dans l'ensemble de définition de f) la différence entre 





[PDF] FONCTION INVERSE - maths et tiques

Définition : La fonction inverse est définie sur ?\{0} par ( ) = Remarque : La courbe d'équation = de la fonction inverse appelée hyperbole 



[PDF] FONCTIONS DE REFERENCE - maths et tiques

Définitions : Soit f une fonction définie sur un intervalle I Définition : La fonction inverse est la fonction f définie sur R \{ }0 par f (x) =



[PDF] Fonction inverse

La fonction f est définie pour tout réel non nul : l'ensemble de définition de f est ]?? ; 0[ U ]0 ;+?[ = R* ? La fonction inverse permet de définir 



[PDF] fonction inverse

La fonction inverse n'est pas définie en 0 car n'existe pas Les bornes de son ensemble de définition sont : ? ? ? 0 par valeurs positives ; ? 0 par 



[PDF] Fonctions carré et fonction inverse

Définition Une fonction f définie sur un ensemble I est paire si : • I est symétrique par rapport à l'origine O du repère (donc pour tout x ? I 



[PDF] I Définition et étude de la fonction inverse - Landatome

Cela veut dire que l'on peut diviser 1 par n'importe quel nombre sauf zéro On a donc exclu zéro de l'ensemble de définition ce qui explique le ??



[PDF] Fonction inverse et étude de quotients classe de seconde - Mathsfg

21 mai 2017 · On appelle fonction inverse la fonction f définie pour tout nombre réel tenant pas à l'ensemble de définition de la fonction f



2 Fonction inverse fonction cube - Lelivrescolairefr

La fonction inverse : 1 est impaire ; 2 ne s'annule pas sur son ensemble de définition ; 3 est strictement décroissante sur ]??;0[ et strictement 



[PDF] Exercices - Fonction inverse - Terminale STHR - edupuy

1 Conjecturer l'ensemble de définition de la fonction f 2 Conjecturer les limites aux bornes de son ensemble de définition

  • Quel est l'ensemble de définition de la fonction inverse ?

    La fonction inverse est la fonction définie sur R?=]??;0[?]0;+?[ qui, à tout réel x différent de 0, associe son inverse x1. Sa courbe représentative est une hyperbole.
  • Pourquoi la fonction inverse est impaire ?

    La fonction inverse est impaire puisque quel que soit x non nul, f(?x) est égal à ?f(x). ? f ( x ) . Par exemple, si x est égal à 2, f(?2) est égal à 1?2 et ?f(2) est égal à ?12.
  • Quelles sont les variations de la fonction inverse ?

    2) Variations Propriété : La fonction inverse est décroissante sur ]?? ; 0[ et sur ]0 ; +?[. < 0. Donc / est décroissante sur ]?? ; 0[ et sur ]0 ; +?[. 1) En +? On s'intéresse aux valeurs de ??(??) lorsque x devient de plus en plus grand.
  • Tout comme la fonction carré qui fait l'objet d'un autre cours, la fonction inverse est une fonction de référence. Comme leur nom l'indique, ces fonctions servent de référence pour étudier les variations, les extrema et les représentations graphiques d'autres fonctions plus complexes.
1

FONCTION INVERSE

Partie 1 : Définition et allure de la courbe

Vidéo https://youtu.be/Vl2rlbFF22Y

1) Définition

Définition : La fonction inverse est définie sur ℝ\ 0 par

2) Représentation graphique

Remarque : La courbe d'équation =

de la fonction inverse, appelée hyperbole de centre

O, est symétrique par rapport à l'origine.

Partie 2 : Dérivée et sens de variation

1) Dérivée

Propriété : La dérivée de la fonction inverse est définie sur ℝ\ 0 par -2 -1 0,25 1 2 3 -0,5 -1 4 1 0,5 1 3 2

Démonstration (pour les experts) :

Vidéo https://youtu.be/rQ1XfMN5pdk

Or : lim

= lim 1 Pour tout nombre , on associe le nombre dérivé de la fonction égal à - Ainsi, pour tout de ℝ\{0}, on a : 1 2

2) Variations

Propriété : La fonction inverse est décroissante sur -∞;0 et sur

0;+∞

Démonstration :

Pour tout de ℝ\

0 < 0.

Donc est décroissante sur

-∞;0 et sur

0;+∞

Partie 3 : Comportement de la fonction inverse aux bornes de son ensemble de définition

1) En +∞

On s'intéresse aux valeurs de

lorsque x devient de plus en plus grand. x 5 10 100 10000 ...

0,2 0,1 0,01 0,0001 ?

On constate que

se rapproche de 0 lorsque x devient de plus en plus grand. On dit que la limite de f lorsque x tend vers +∞ est

égale à 0 et on note :

lim =0.

Graphiquement, pour des valeurs de plus en plus

grandes, la courbe de se rapproche de plus en plus de l'axe des abscisses. 3

2) En -∞

On s'intéresse aux valeurs de

lorsque x devient de plus en plus " grand dans les négatifs » x ... -10000 -100 -10 -5 ? -0,0001 -0,01 -0,1 -0,2

On constate que

se rapproche de 0 lorsque x devient de plus en plus " grand dans les négatifs ». On dit que la limite de lorsque tend vers -∞ est égale à 0 et on note : lim =0. Graphiquement, pour des valeurs de plus en plus " grandes dans les négatifs », la courbe de se rapproche de plus en plus de l'axe des abscisses. On dit que l'axe des abscisses est une asymptote horizontale à la courbe de la fonction inverse en -∞ et en +∞.

3) Au voisinage de 0

L'image de 0 par la fonction n'existe pas. On s'intéresse cependant aux valeurs de lorsque x se rapproche de 0. x -0,5 -0,1 -0,01 -0,001 ... 0,001 0,01 0,1 0,5 -2 -10 -100 -1000 ? 1000 100 10 2

A l'aide de la calculatrice, on constate que :

- Pour >0 : devient de plus en plus grand lorsque se rapproche de 0. On dit que la limite de lorsque tend vers 0 pour >

0 est égale à +∞ et on note :

lim Graphiquement, pour des valeurs positives, de plus en plus en proches de 0, la courbe de se rapproche de plus en plus de l'axe des ordonnées. 4 - Pour <0 : devient de plus en plus " grand dans les négatifs » lorsque se rapproche de 0. On dit que la limite de lorsque tend vers 0 pour <0 est égale à -∞ et on note : lim

Graphiquement, pour des valeurs négatives, de

plus en plus en proches de 0, la courbe de se rapproche de plus en plus de l'axe des ordonnées. On dit que l'axe des ordonnées est une asymptote verticale à la courbe de la fonction inverse. - Si ′()≥0, alors est croissante. Méthode : Étudier une fonction obtenue par combinaisons linéaires de la fonction inverse et d'une fonction polynomiale

Vidéo https://youtu.be/P3Ui9-Pk8p8

Soit la fonction définie sur ℝ∖ 0 par =1-2-

1) Calculer la fonction dérivée de .

2) Déterminer le signe de ′ en fonction de .

3) Dresser le tableau de variations de .

4) Représenter la fonction dans un repère.

Correction

1) On a :

=1-2-2×

Rappels sur les formules de dérivation :

Fonction f Dérivée f '

=0 =2 0 =3 5

Donc :

=-2- 2× "- =-2+ -2 2 2

2) On commence par résoudre l'équation

()=0.

Soit : 2-2

=0

Donc : 2=2

Soit :

=1

Et donc : =1 ou =-1.

′ est du signe du numérateur car le dénominateur est positif. Le numérateur est une fonction du second degré représentée par une parabole sont les branches sont tournées vers le bas (=-2 est négatif). Elle est donc d'abord négative (avant =-1) puis positive (entre =-1 et =1) et à nouveau négative (après =1).

3) On dresse alors le tableau de variations en appliquant le théorème :

En effet :

-1 =1-2× -1 =5 1 =1-2×1- =-3

4) En testant, pour des valeurs négatives de plus en plus en proches de 0,

devient de plus en plus grand. Pour des valeurs positives, devient de plus en plus " grand dans les négatifs ». L'axe des ordonnées est une asymptote verticale à la courbe de la fonction . 6quotesdbs_dbs35.pdfusesText_40
[PDF] courbe fonction cube

[PDF] offre d'emploi maroc 2016

[PDF] trovit maroc

[PDF] comment calculer une moyenne de plusieurs pourcentages

[PDF] pourcentage pondéré définition

[PDF] avito offre emploi marrakech

[PDF] qu'est ce qu'une moyenne pondérée

[PDF] moyenne pondéré excel

[PDF] effectif pondéré eple

[PDF] note pondérée marché public

[PDF] marge pondérée

[PDF] résultat pondéré

[PDF] tableur statistiques 4ème

[PDF] exercice corrigé boite ? moustache

[PDF] variance d'une série statistique