[PDF] [PDF] 254 Compléments (fonctions trigonométriques inverses)





Previous PDF Next PDF



[PDF] Fonctions trigonométriques réciproques

Fonctions trigonométriques réciproques 1 Définitions Les fonctions sinus cosinus définies de r dans l'intervalle [-1 ;1] sont des applications 



[PDF] 254 Compléments (fonctions trigonométriques inverses)

Comme 0? ? 2 ? y ?? on obtient arcsin(x)+arccos(x)= y + arcos(cos( ? 2 ? y)) = ? 2 III La fonction arctan: la fonction tangente est monotone ( 



[PDF] Cours magistral 4 : Réciproques des fonctions trigonométriques

trigonométriques Trouvons une fonction réciproque de cos D'abord cet intervalle la fonction cosinus est continue et strictement



[PDF] Chapitre12 : Fonctions circulaires réciproques - Melusine

Arcsin n'est pas dérivable en ´1 ni en 1 mais sa courbe présente aux points d'abscisses ´1 et 1 une demi tangente verticale En effet Arcsin est dérivable 



[PDF] Chapitre 7 Fonctions réciproques et nouvelles fonctions usuelles

7 2 Fonctions trigonométriques réciproques Les fonction trigonométriques (sinus cosinus tangente) ne sont pas injectives; elles n'admettent donc pas de



[PDF] Feuille dexercices 7 Fonctions trigonométriques réciproques

Fonctions trigonométriques réciproques Exercice 1 Soit la fonction définie par Sur quel ensemble cette fonction est-elle définie et continue ?



[PDF] Exercices sur les fonctions trigonométriques réciproques

Exercices sur les fonctions trigonométriques réciproques 1 On considère la fonction f définie par 1 Arctan 1 x f x x



[PDF] Chapitre 15 : Dérivée des réciproques des fonctions trigonométriques

Chapitre 15 : Dérivée des réciproques des fonctions trigonométriques 15 1 Dérivée des fonctions réciproques de sinus cosinus tangente et cotangente



[PDF] Fonctions trigonométriques et trigonométriques inverses

Les six rapports trigonométriques permettent de définir six nouvelles fonctions: sinus (sin) cosinus (cos) tangente (tg) cotangente (cotg) sécante (sec) et 



[PDF] COURS DE MATH´EMATIQUES Modules M 1201 & M 1302

Figure 7 3 – Représentation graphique de cos sur [0; ?] Page 51 II FONCTIONS RÉCIPROQUES DES FONCTIONS TRIGONOMÉTRIQUES 47 La restriction de la fonction x 



[PDF] Fonctions trigonométriques réciproques

Fonctions trigonométriques réciproques 1 Définitions Les fonctions sinus cosinus définies de r dans l'intervalle [-1 ;1] sont des applications 



[PDF] Fonctions trigonométriques et hyperboliques réciproques

Fonctions trigonométriques et hyperboliques réciproques I Quelques formules de trigonométrie 1 Identité remarquable 2 + 2 = 1; ?



[PDF] Feuille dexercices 7 Fonctions trigonométriques réciproques

Semestre de printemps 2016-2017 Fondamentaux des mathématiques 2 Feuille d'exercices 7 Fonctions trigonométriques réciproques Exercice 1 1 Montrer que



[PDF] Chapitre12 : Fonctions circulaires réciproques - Melusine

Chapitre12 : Fonctions circulaires réciproques I La fonction Arcsin A) Étude Soit f : [´ ? 2 ? 2 ] ÝÑ [´1 1] x ÞÝ Ñ sin x



[PDF] Cours magistral 4 : Réciproques des fonctions trigonométriques

Cours magistral 4 : Réciproques des fonctions trigonométriques Trouvons une fonction réciproque de cos D'abord cos : R ? [-11] n'est pas une bijection



[PDF] 254 Compléments (fonctions trigonométriques inverses)

En effet pour x ?[ ?1 1] posons y = arcsin(x) Nous avons ? ? 2 ? y ? ? 2 et sin(y)= x 



[PDF] 2 Fonctions trigonométriques - Université de Rennes

Fonctions trigonométriques directes Exercice 2 1 (b) En déduire les formules (à connaître) : cos2 a = 1 Fonctions trigonométriques réciproques



[PDF] Exercices sur les fonctions trigonométriques réciproques

b) Démontrer que g est dérivable en 1 Arctan 2 b et calculer 'g b QUESTIONS DE COURS 1 Simplifier Arccos(cos x) et cos(Arccos x) 2 Démontrer 



[PDF] Chapitre 7 Fonctions réciproques et nouvelles fonctions usuelles

ln1 pxq “ 1 x 7 2 Fonctions trigonométriques réciproques Les fonction trigonométriques (sinus cosinus tangente) ne sont pas injectives; elles n' 



[PDF] Chapitre 15 : Dérivée des réciproques des fonctions trigonométriques

Ces dérivées devraient être la fin oui oui la FIN de votre cours de Calcul 1 J'espère que ce document aura su vous aider à mieux comprendre votre premier 

  • Comment trouver la réciproque d'une fonction trigonométrique ?

    La réciproque de la fonction sinus de base est la fonction arc sinus qui s'intéresse à la mesure des angles (en radians) du cercle trigonométrique en fonction de l'ordonnée des points du cercle. La règle de la fonction arc sinus de base est f(x)=arcsin(x). f ( x ) = arcsin ? On note aussi cette fonction f(x)=sin?1(x).
  • Est-ce que arcsin est periodique ?

    Exemple : Arcsin(1/2) = ?/6. Pourquoi Arc et non angle ? Tout simplement parce que sur le cercle trigonométrique (centré à l'origine et de rayon 1), y représente la mesure de l'arc AM défini par l'angle ^AOM. Périodique : non.
  • Quelles sont les fonctions trigonométriques ?

    L'expression fonction trigonométrique est un terme général utilisé afin de désigner, entre autres, l'une ou l'autre des fonctions suivantes: sinus, cosinus, tangente, sécante, cosécante, cotangente. On appelle aussi ces fonctions des fonctions circulaires.
  • Proposition 2.1 a) Les fonctions arctan et arcsin sont impaires mais arccos n'est pas paire ; 1 Page 2 b) les fonctions arctan et arcsin sont strictement croissantes et la fonction arccos strictement décroissante.

2.5.4 Compléments (fonctions trigonométriques inverses)Les fonctions trigonométriquesx

?sin(x),x?cos(x),x?tan(x)n"étant pas monotones surR(la fonctionx ?tan(x)n"est même pas définie surRtout entier), pour construire des fonctions inverses (on dit aussi fonctions réciproques) aux fonctions trigonométriques, on est obligé de se restreindre à des intervalles de monotonie de ces fonctions (on prend en général des intervalles de monotonie maximaux).

I.La fonction arcsin:la fonctionx

?sin(x)est monotone (strictement croissante) sur l"intervalle[-π

2,π

2].

On définit alors son inverse, arcsin:[-1,1]

2,π

2],x?arcsin(x).

Il faut retenir que:

1. ledomaine de définitionde la fonction arcsinus est[-1,1]

2.y=arcsin(x)

sin(y)=xet-π 2 ?y?π 2 Les graphes de ces deux fonctions sont symétriques par rapport à la droite d"équationy=x. En utilisant les règles de dérivation de fonctions composées, on montre que la fonctionx ?arcsin(x)est dérivable sur]-1,1[et que arcsin(x))?=1

1-x2⎷

II.La fonction arccos:la fonctionx

?cos(x)est monotone (strictement décroissante) sur l"intervalle [0,π]. On définit son inverse, arccos:[-1,1] ?[0,π],x?arccos(x).

Il faut retenir que:

1. ledomaine de définitionde la fonction arccos est[-1,1]

2.y=arccos(x)

?(cos(y)=xet0?y?π)

2.5 Techniques d"intégration29

Les graphes de ces deux fonctions se déduisent l"un de l"autre par symé- trie orthogonale par rapport à la droite d"équationy=x. En utilisant les règles de dérivation de fonctions composées, on montre que la fonctionx ?arccos(x)est dérivable sur]-1,1[et que arccos(x))?=-1

1-x2⎷

Remarque:En utilisant les définitions des fonctionsarcsin,arccoset les formules trigonométriques usuelles, on montre: ?x?[-1,1],arcsin(x)+arccos(x)=π 2

En effet, pourx?[-1,1], posonsy=arcsin(x).

Nous avons-π

2 ?y?π

2et sin(y)=x. Or on a sin(y)=cos(π

2-y).

Comme0?π

2 -y?π, on obtient arcsin(x)+arccos(x)=y+arcos(cos(π 2 -y))=π 2.

III.La fonction arctan:la fonction tangente est monotone (strictement croissante) sur l"intervalle]-π

2 2[.

L"image de l"intervalle]-π

2

2[par la fonctionx?tan(x)estRtout

entier. La fonction inverse (ou encore réciproque) déduiteest la fonction arctan:R

2,π

2[. Ce qu"il faut retenir:

1. Ledomaine de définitionde arctan estR

2.y=arctan(x)

tan(y)=xet-π 2 < y <π 2 arctanest dérivable surRet on aarctan(x)?=1 1+x2. IV.Complément à la liste des primitives des fonctions usuelles: λdésignant une constante réelle quelconque, nous avons: 1.? 1

1-x2⎷

dx=arcsin(x)+λ 2.? 1

1+x2dx=arctan(x)+λ

30Intégration: fonction réelle d"une variable réelle.

2.6 Intégrales impropres - Définitions et exemplesUne généralisation de la notion d"intégrale définie.2.6.1 Intégrales (impropres) sur un intervalle non bornéDéfinition 2.30.Soienta?R,f:[a,+∞[

?R. On suppose que pour toutb?a,fest intégrable sur l"intervalle fermé borné [a,b].

On pose alors par définition?

a+∞ f(x)dx=lim b ab f(x)dx. L"expression a+∞ f(x)dxest appelée intégrale impropre defsur? a,+∞? Silim b ab f(x)dxexiste et est un nombre réel, alors l"intégrale impropre a+∞ f(x)dxest dite convergente. Silim b ab f(x)dxn"existe pas ou est infinie, alors? a+∞ f(x)dxest dite divergente Note:Nous n"allons pas aborder ici les théorèmes généraux de convergence des intégrales impropres, mais plutôt considérer des cas simples où on sait calculer? ab f(x)dx. Le passage à la limite lorsquebtend vers+∞(ou lorsqueatend vers - ∞comme ci-dessous) nous permettra de décider de la convergence de l"intégrale impropre considérée.

Exemple 2.31.

1.f:?

1,+∞?

?R,f(x)=1 x 2.

Pourb??

1,+∞?

, on afcontinue sur[1,b]et? 1b f(x)dx=? -1 x 1b =1-1 b

On en déduit lim

b ab f(x)dx=1, donc?

1+∞

f(x)dx=1.

2.f:??

1,+∞?

?R,f(x)=1 x.

On a, pourb?1,?

1b f(x)dx=? ln(x)? 1b =ln(b). Comme lim b ?+∞ln(b)=+∞, on en déduit que l"intégrale impropre

1+∞

f(x)dx diverge.

3. L"intégrale impropre?

0+∞

cos(x)dx diverge.

En effet

0b cos(x)dx=? sin(x)? 0b =sin(b)et lim b ?+∞sin(b)n"existe pas.2.6 Intégrales impropres - Définitions et exemples31quotesdbs_dbs35.pdfusesText_40
[PDF] shlomo sand livres

[PDF] le peuple est il souverain dissertation

[PDF] exercices corrigés fonction arctangente

[PDF] fonction circulatoire définition

[PDF] comment la terre d'israël fut inventée pdf

[PDF] origine des juifs d'israel

[PDF] appareil circulatoire cours

[PDF] système circulatoire

[PDF] comment la terre d'israël fut inventée

[PDF] appareil circulatoire schéma

[PDF] histoire peuple hebreu

[PDF] mozart wikipedia

[PDF] tp mps poudre blanche

[PDF] exemple programme mblock arduino

[PDF] fonction de production pdf