[PDF] Continuité et dérivabilité dune fonction





Previous PDF Next PDF



Continuité et dérivabilité dune fonction

7 nov. 2014 La fonction valeur absolue x ??



CONTINUITÉ DES FONCTIONS

La courbe représentative d'une fonction continue se trace sans lever le crayon. http://www.maths-et-tiques.fr/telech/Algo_SolEqua.pdf. EXEMPLE 2.



Chapitre8 : Fonctions continues

Le produit d'une fonction continue par un réel est continu. Le produit de deux fonctions et composition de fonctions continues donc est continue.



Fonctions continues et uniformement continues

Théorème : les fonctions lipschitziennes sont uniformément continues Une fonction continue sur un segment est bornée et atteint ses bornes.



2. Continuité des fonctions

f (x)= f (a) . Exercice 2.1. Esquissez le graphe d'une fonction qui est continue partout sauf en x = 3 et qui est.



Chapitre 3 Dérivabilité des fonctions réelles

La réciproque est fausse. Par exemple la fonction f : x ??





Corrigé du TD no 11

max(fg) = 1. 2. (f + g +



Chapitre4 : Intégrale dune fonction continue sur un segment et

D'où on tire alors le résultat voulu. B) Remarques. Soit f une fonction définie sur I où I est un intervalle. On suppose f non continue 



Espaces Vectoriels Normés et Topologie

fonctions continues sur le segment [01]. Pour vous donner un exemple assez concret



Intégrales de fonctions de plusieurs variables

Proposition 8.1.1 (Existence et quasi-unicité d'une primitive). Toute fonction continue d'une variable f admet des primitives. De plus (sur tout intervalle 



[PDF] CONTINUITÉ DES FONCTIONS - maths et tiques

1) • La fonction est continue sur l'intervalle [1 ; 2] car une fonction polynôme est continue sur ? • (1) = 1 ? 1 ?1=?1



[PDF] Chapitre8 : Fonctions continues - Melusine

Lorsque le contexte est ambigü évitder de dire f est continue sur [0 1] mais plutôt f[01] est continue Remarque : Si f est continue sur [a b] et sur [b 



[PDF] Continuité et dérivabilité dune fonction - Lycée dAdultes

7 nov 2014 · Propriété 1 : Admis • Les fonctions polynômes sont continues sur R • La fonction inverse x ?? 1 x est continue sur ] ? ?;0[ et sur ] 



[PDF] Chapitre 2 Continuité des fonctions réelles

Continuité des fonctions réelles 2 1 Généralités Définition 2 1 1 Une fonction réelle f est une application d'une partie D de R dans R La partie D est 



[PDF] COURS 12 : Fonctions continues (suite)

Si f est une fonction continue sur un intervalle fermé borné [a b] alors f est bornée sur [a b] et atteint ses bornes sur [a b] Démonstration Pour montrer 



[PDF] Continuité

?? ? R? + ?x ? R 3 ? ? < x < 3 + ? ? 8 98 < x2 < 9 02 Exo 1 La fonction cosinus est continue en a := 2? Si on applique cet



[PDF] 2 Continuité des fonctions - Apprendre-en-lignenet

1 si x=2 Comme f (2) = 1 f est définie en 2 et lim x?2 x2 –x– 2 x– 2 Esquissez le graphe d'une fonction qui est continue partout sauf en x = 3 



[PDF] Continuité dune fonction Théorème des valeurs intermédiaires

fonction est continue sur l'intervalle [– 1 ; 3] (en effet on peut tracer sa courbe sans lever le crayon) mais non dérivable au point d'abscisse 2 (la courbe 



[PDF] Fonctions continues ( ) ( ) ( ) ( ) ( ) ( ) 1

Fonctions continues I- Fonction continue sur un intervalle En revanche on peut prolonger par continuité en posant : (2) = 1 Les fonctions de 



[PDF] LIMITE ET CONTINUITE - AlloSchool

III) OPERATIONS SUR LES FONCTIONS CONTINUES 1) Continuité sur un intervalle Définition : Soit une fonction dont le domaine de définition est  

  • Comment expliquer qu'une fonction est continue ?

    En mathématiques, la continuité est une propriété topologique d'une fonction. En première approche, une fonction f est continue si, à des variations infinitésimales de la variable x, correspondent des variations infinitésimales de la valeur f(x).
  • Quelles sont les fonctions continues ?

    Définition intuitive : Une fonction est continue sur un intervalle, si sa courbe représentative peut se tracer sans lever le crayon.
  • Comment justifier qu'une fonction est continue sur R ?

    Ainsi, il suffit de dire que en dehors de ces réels 0 et 1 (c'est à dire en tout réel distinct de 0 et de 1) la fonction est bien continue (car ce sont des fonctions "usuelles"). Ensuite, il suffit de savoir si en 0, à gauche, la fonction admet une limite et si c'est la même que celle en 0, à droite (si elle existe).
  • On rappelle que pour étudier la continuité d'une fonction f sur un point il faut : — vérifier si la limite de f au point x0 existe et, si elle existe, la calculer ; — vérifier si la valeur de la limite est égal à f(x0).
DERNIÈRE IMPRESSION LE7 novembre 2014 à 10:23

Continuité et dérivabilité d"unefonction

Table des matières

1 Continuité d"une fonction2

1.1 Limite finie en un point. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Continuité en un point. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Continuité des fonctions usuelles. . . . . . . . . . . . . . . . . . . . 3

1.4 Théorème du point fixe. . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Continuité et dérivabilité. . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Continuité et équation. . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Dérivabilité6

2.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Interprétations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Interprétation graphique. . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Interprétation numérique. . . . . . . . . . . . . . . . . . . . 8

2.2.3 Interprétation cinématique. . . . . . . . . . . . . . . . . . . 8

2.3 Signe de la dérivée, sens de variation. . . . . . . . . . . . . . . . . . 9

2.4 Dérivée et extremum local. . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Dérivées des fonctions usuelles. . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Dérivée des fonctions élémentaires. . . . . . . . . . . . . . . 11

2.5.2 Règles de dérivation. . . . . . . . . . . . . . . . . . . . . . . 11

2.5.3 Exemples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

PAULMILAN1 TERMINALES

TABLE DES MATIÈRES

1 Continuité d"une fonction

1.1 Limite finie en un point

Définition 1 :Dire qu"une fonction

fa pour limite?ena, signifie que tout intervalle ouvert contenant?contient toutes les valeurs def(x)pourxassez proche dea- c"est à dire pour lesxd"un intervalle]a-η;a+η[. On note alors : lim x→af(x) =? a a+ηa-ηC f O?? Remarque :Parfois la fonctionfn"admet pas une limite ena, mais admet une limite à droite et une limite à gauche. C"est le cas de la fonction partie entièreE (voir plus loin). On a par exemple : limx→2-E(x) =1 et limx→2+E(x) =2

1.2 Continuité en un point

Définition 2 :Soit une fonctionfdéfinie sur un intervalle ouvert I. Soitaun élément de I. On dit que la fonctionfestcontinueenasi et seulement si : lim x→af(x) =f(a) La fonctionfestcontinue sur un intervalle Isi, et seulement si,fest continue en tout point de I. Remarque :Graphiquement, la continuité d"une fonctionfsur un intervalle I se traduit par une courbe en un seul morceau. 123

1 2 3 4 5-1

]Cf O

Fonctionfdiscontinue en 2

limx→2+f(x) =3?=f(2) 123

1 2 3 4 5-1

Cf O

Fonctionfcontinue sur[-1,5; 5,5]

La fonction de gauche représente une discontinuité par "saut". C"est le cas par exemple de la fonction partie entière ou plus pratiquement de la fonction qui représente les tarifs postaux en fonction du poids (brusque changement de tarif entre les lettres en dessous de 20 g et de celles entre 20 g et 50 g).

PAULMILAN2 TERMINALES

1. CONTINUITÉ D"UNE FONCTION

D"autres discontinuités existent. C"est par exemple le cas en 0 de lafonctionf définie parf(x) =sin1 xpourx?=0 etf(0) =0. ?x?R,?n?Z,n?xLafonction partie entièreEest alors définie par :E(x) =n

E(2,4) =2 ;E(5) =5 ;E(-1,3) =-2

On observe alors un "saut" de la fonction pour

chaque entier. La fonction partie entière n"est donc pas continue pourxentier. 123
-1 -21 2 3 4-1-2 O

Soit la fonctionfdéfinie par :???f(x) =sin1

xpourx?=0 f(0) =0

La fonctionfn"est pas continue en 0 bien qu"on

n"observe ici aucun "saut". La fonction oscille de plus en plus autour de 0 si bien qu"au voisi- nage de 0, la fonction tend vers une oscillation infinie qui explique la non continuité. 1 -11-1O

1.3 Continuité des fonctions usuelles

Propriété 1 :Admis

•Les fonctions polynômes sont continues surR. •La fonction inversex?→1xest continue sur]-∞;0[et sur]0;+∞[ •La fonction valeur absoluex?→ |x|est continue surR. •La fonction racine carréex?→⎷xest continue sur[0;+∞[ •Les fonctionsx?→sinxetx?→cosxsont continues surR •D"une façon générale, toutes fonctions construites par opération ou par com- position à partir des fonctions ci-dessus sont continues sur leur ensemble de définition, en particulier les fonctions rationnelles.

1.4 Théorème du point fixe

Théorème 1 :Théorème du point fixe

Soit une suite(un)définie paru0etun+1=f(un)convergente vers?. Si la fonction associéefest continue en?, alors la limite de la suite?est solution de l"équationf(x) =x.

PAULMILAN3 TERMINALES

TABLE DES MATIÈRES

Démonstration :

On sait que la suite(un)est convergente vers?donc : limn→+∞un=? De plus, la fonctionfest continue en?donc : limx→?f(x) =f(?)

Par composition, on en déduit que : lim

n→+∞f(un) =f(?)?limn→+∞un+1=f(?) or lim Exemple :Reprénons l"exemple du chapitre 2, soit la suite(un) ?u0=0 u n+1=? 3un+4 On a montré que la suite(un)était positive, croissante et majorée par 4, elle est donc convergente vers?. La fonctionx?→⎷

3x+4 est continue sur[0;4], donc?

est solution de l"équationf(x) =x.

3x+4=xon élève au carré

3x+4=x2

x

2-3x-4=0

Cette équation a-1 et 4 comme solution. Or on sait queun?0. On en déduit que la seule solution acceptable est 4. La suite(un)converge vers 4.

1.5 Continuité et dérivabilité

Théorème 2 :Admis

•Sifest dérivable enaalors la fonctionfest continue ena. •Sifest dérivable sur un intervalle I alors la fonctionfest continue sur I. ?La réciproque de ce théorème est fausse Remarque :Laréciproquedecethéorèmeestfausse.Pours"enrendrecompte,on peut s"appuyer surunereprésentation graphique.Siunefonction est continuesur un intervalle, sa représentation graphique est en un seul morceau. Sila fonction est dérivable, sa représentation graphique admet une tangente en chacun de ses points. Un petit exemple :

La fonction dont la représentation est

ci-contre, est bien continue ena, car la courbe est en un seul morceau.

Par contre, la fonction n"est pas déri-

vable ena, car la représentation admet au point A deux demi-tangentes.

Onditquelacourbeadmetunpointan-

guleux A O a?

PAULMILAN4 TERMINALES

1. CONTINUITÉ D"UNE FONCTION

La fonction valeur absoluex?→ |x|est continue mais pas dérivable en 0.

1.6 Continuité et équation

Théorème 3 :Théorème des valeurs intermédiaires Soit une fonctioncontinuesur un intervalle I= [a,b]. Pour tout réelkcompris entref(a)etf(b), il existe un réelc?I tel quef(c) =k.

Remarque :Ce théorème est admis.

Ce théorème résulte du fait que l"image

d"un intervalle deRpar une fonction continue est un intervalle deR

Voici une illustration graphique. Icik

est bien compris entref(a)etf(b).

L"équationf(x) =kadmet donc des so-

lutions.

Le fait quecexiste ne veut pas dire

qu"il soit unique. Dans notre exemple, il existe ainsi trois valeurs pourc. abf(a) f(b)k c

1c2c3O

Théorème 4 :Théorème des valeurs intermédiaires bis Soit une fonctionfcontinue et strictement monotonesurI= [a,b]. Pour tout réelkcompris entref(a)etf(b), l"équationf(x) =ka une unique solution dans I= [a,b] Démonstration :L"existence découle du théorème précédent, et l"unicité de la monotonie de la fonction.

Remarque :

•On généralise ce théorème à l"intervalle ouvertI=]a,b[.kdoit alors être com- pris entre limx→af(x)et limx→bf(x) •Lorsquek=0, on pourra montrer quef(a)×f(b)<0.

•Ce théorème est parfois appelé le théorème de la bijection car lafonction réalise

une bijection de I surf(I). •Un tableau de variation pourra être suffisant pour montrer la continuitéet la monotonie de la fonction. Exemple :Soit la fonctionfdéfinie surRpar :f(x) =x3+x-1. Montrer que l"équationf(x) =0 n"admet qu"une solution surR. On donnera un enca- drement à l"unité de cette solution. Trouver ensuite, à l"aide d"un algorithme un encadrement à 10 -6de cette solution.

PAULMILAN5 TERMINALES

TABLE DES MATIÈRES

123
-1 -20.5 1.0 1.5 Oα

La fonctionfest une fonctioncontinuesurRcarf

est un polynôme.

La fonctionfest la somme de deux fonctions crois-

santesx?→x3etx?→x-1, doncfeststrictement croissantesurR.

On af(0)=-1 etf(1)=1?f(0)×f(1)<0

donc d"après le théorème des valeurs intermé- diaires, la fonctionfadmet un uniqueα?[0,1] tel quef(α) =0.

Algorithme :Un algorithme utilisant le

principe dedichotomie(on divise l"intervalle en deux et on réitère l"opération) permet de trouver une approximation deαà la précisionquotesdbs_dbs4.pdfusesText_7
[PDF] recherche patente maroc

[PDF] mps projet autour du yaourt

[PDF] mps seconde alimentation maths

[PDF] biographe

[PDF] continuité uniforme exo7

[PDF] comment montrer qu'une fonction est uniformement continue

[PDF] fonction lipschitzienne continue démonstration

[PDF] continuité uniforme graphiquement

[PDF] fonction uniformément continue non lipschitzienne

[PDF] difference entre continue et uniformement continue

[PDF] fonction continue mais pas uniformément continue

[PDF] plan histoire des arts

[PDF] sciences des aliments cours pdf

[PDF] qualité organoleptique des aliments définition

[PDF] cours de sciences des aliments