[PDF] Limites et continuité Soit ]a b[ un intervalle





Previous PDF Next PDF



VARIATIONS DUNE FONCTION

On dit qu'une fonction croissante conserve l'ordre et qu'une fonction b) La fonction est croissante sur les intervalles [?4 ; 0] et [5 ; 7].



Monotonie

Fonctions strictement croissantes. On dit qu'une fonction f est strictement croissante ssi Donner un exemple de fonction décroissante non strictement.



LES SUITES

c) la suite (un) est monotone si elle est croissante ou décroissante ; f sur l'intervalle 0;+? . ... DÉMONTRER QU'UNE SUITE EST ARITHMÉTIQUE.



FONCTIONS DE REFERENCE

Propriété : La fonction racine carrée est strictement croissante sur l'intervalle 0;+????? . Démonstration : Soit a et b deux nombres réels positifs tels 





GÉNÉRALITÉS SUR LES SUITES

Par ce procédé Archimède donne naissance



Théorème de la bijection : exemples de rédaction

a) f(I) est un intervalle car image d'un intervalle par une fonction continue Montrer qu'il existe un unique ? ? ... tel que . . . ».



Chapitre 3 Dérivabilité des fonctions réelles

Dans tout ce chapitre I désigne un intervalle non vide de R. mettent cependant de vérifier qu'une fonction est (ou n'est pas) dérivable en un point.



Limites et continuité

Soit ]a b[ un intervalle ouvert



CONTINUITÉ

Si f '(x) ? 0 alors f est croissante sur I. La fonction f est donc décroissante sur l'intervalle ??;2 ... 1) Démontrer que f '(x) = 3x x ? 2.



[PDF] Monotonie

On dit qu'une fonction est croissante sur une partie I de DD(f ) ssi ?xy ? Ix ? y ? f (x) ? f (y) On s'intéresse surtout au cas o`u I est un intervalle 



[PDF] VARIATIONS DUNE FONCTION - maths et tiques

Propriété : La fonction racine carrée est strictement croissante sur l'intervalle [0 ; +?[ Démonstration au programme : Vidéo https://youtu be/1EUTIClDac4



[PDF] FONCTIONS DE REFERENCE - maths et tiques

Définitions : Soit f une fonction définie sur un intervalle I - Dire que f est croissante sur I (respectivement strictement croissante sur I) signifie



[PDF] Continuité et monotonie sur un intervalle - CPGE Brizeux

Corollaire 1 Si f : I ? R est une fonction définie et continue sur un intervalle I alors l'image directe f(I) de I par f est un intervalle Démonstration — 



[PDF] Étude globale dune fonction sur un intervalle

On dit que f est une fonction croissante sur l'intervalle I lorsque pour tout (a b) ? I2 a ? b =? f(a) ? f(b) On dit que f est une fonction 



[PDF] Chapitre 3 Dérivabilité des fonctions réelles

Dans tout ce chapitre I désigne un intervalle non vide de R Définition 3 1 1 Soit f : I ? R une fonction et soit x0 ? I On dit que f est dérivable



[PDF] Chapitre 2 Continuité des fonctions réelles

Pour que ceci ait un sens il faut montrer l'unicité de la limite — quand elle Soit f : D ? R une fonction et soit x0 ? D On dit que f est continue



[PDF] CH XI : Étude globale des fonctions réelles dune variable réelle

Donner son domaine de définition 3f et démontrer que f est paire Une fonction qui n'est pas croissante n'est pas forcément décroissante La



[PDF] Dérivation des fonctions

On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I On note f la fonction dérivée de f qui à tout x ?I 



[PDF] Continuité et dérivabilité dune fonction - Lycée dAdultes

7 nov 2014 · Définition 2 : Soit une fonction f définie sur un intervalle ouvert I Soit a un élément de I On dit que la fonction f est continue en a si 

  • Comment prouver qu'une fonction est croissante sur un intervalle ?

    On dit qu'une fonction f est croissante ssi pour x et y dans le DD de f , si on a x ? y, on a aussi f (x) ? f (y). En langage plus formel, ? donne ?x,y ? DD(f ),x ? y ? f (x) ? f (y).
  • Comment déterminer une fonction croissante ?

    Si [a, b] est un intervalle du domaine d'une fonction f, on dit que la fonction f est croissante dans l'intervalle [a, b] si et seulement si pour tout élément x1 et x2 de [a, b], si x1 < x2, alors f(x1) ? f(x2).
  • Comment voir si une fonction est croissante ou décroissante ?

    Une fonction est dite strictement croissante sur un intervalle de x si les valeurs de y ne font qu'augmenter. Une fonction est dite strictement décroissante sur un intervalle de x si les valeurs de y ne font que diminuer.
  • Soit une fonction continue et strictement monotone sur un intervalle. Si a et b désignent les extrémités de l'intervalle (c'est-à-dire a ou b sont des réels ou sont les symboles ? ? ou + ? ) alors les extrémités de l'intervalle sont lim x ? a f ( a ) et lim x ? b f ( x ) (ces limites pouvant être elles-mêmes infinies).
Université Joseph Fourier, Grenoble Maths en Ligne

Limites et continuité

Bernard Ycart

Vous avez déjà une compréhension intuitive de ce qu"est la limite d"une fonction. Ce chapitre n"en est pas moins le plus important de votre cours d"analyse. C"est l"occasion ou jamais de comprendre les epsilons! Votre travail devrait être facilité si vous avez déjà assimilé le chapitre sur les suites, mais ce n"est pas indispensable.

Table des matières

1 Cours 1

1.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Opérations sur les limites . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Limites unilatérales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Convergence des fonctions monotones . . . . . . . . . . . . . . . . . . . 10

1.6 Comparaison de fonctions . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Limites à connaître . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.8 Continuité en un point . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.9 Continuité sur un intervalle . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Entraînement 22

2.1 Vrai ou faux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 QCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Corrigé du devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Compléments 42

3.1 Cauchy et les limites . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Continuité uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Arguments de continuité . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Discontinuités des fonctions monotones . . . . . . . . . . . . . . . . . . 48

3.5 Pourquoi définir la continuité? . . . . . . . . . . . . . . . . . . . . . . . 49

8 novembre 2011

Maths en LigneLimites et continuitéUJF Grenoble1 Cours

1.1 Vocabulaire

UnefonctionfdeRdansRest définie par songraphe: c"est un sous-ensembleΓ deR×R, tel que pour toutx?R, au plus un réelyvérifie(x,y)?Γ. S"il existe, ce réelyest l"imagedexet est notéf(x). L"ensemble desxqui ont une image parf est ledomaine de définitiondef. Nous le noteronsDf. La notation standard est la suivante :f D f-→R x?-→f(x) SiAest un sous-ensemble deDf, l"imagedeA, notéef(A), est l"ensemble des images des éléments deA. f(A) ={f(x), x?A} SiBest un sous-ensemble deR, l"image réciproquedeB, notéef-1(B), est l"ensemble desantécédentsdes éléments deB. f -1(B) ={x? Df, f(x)?B} Attention à la notationf-1:f-1(B)est défini même sifn"est pas bijective. Par exemple, sifest l"application valeur absolue,x?→ |x|, f(]-2,1[) = [0,2[etf-1([1,2]) = [-2,-1]?[1,2] Définition 1.Soitfune fonction, de domaine de définitionDf, à valeurs dansR.

On dit quefest :

•constantesi?x,y? Df, f(x) =f(y) •croissantesi?x,y? Df,(x6y) =?(f(x)6f(y)) •décroissantesi?x,y? Df,(x6y) =?(f(x)>f(y)) •strictement croissantesi?x,y? Df,(x < y) =?(f(x)< f(y)) •strictement décroissantesi?x,y? Df,(x < y) =?(f(x)> f(y)) •monotonesi elle est croissante ou décroissante •majoréesif(Df)est majoré •minoréesif(Df)est minoré •bornéesif(Df)est borné Le plus souvent, ces définitions s"appliqueront à desrestrictionsdefà un intervalle

Iinclus dansDf.

f |I

I-→R

x?-→f(x) 1

Maths en LigneLimites et continuitéUJF GrenobleDéfinition 2.Soitfune fonction deRdansRetx? Df. SoitPune des propriétés

de la définition 1. On dit quefpossède la propriétéP •au voisinage dexs"il existe un intervalle ouvertIcontenantx, tel que la restric- tion defàIpossède la propriétéP. •au voisinage de+∞s"il existe un réelAtel que la restriction defà]A,+∞[ possède la propriétéP. •au voisinage de-∞s"il existe un réelAtel que la restriction defà]- ∞,A[ possède la propriétéP. Par exemple, la fonction valeur absoluex?→ |x|, est : •décroissante au voisinage de-∞ •décroissante au voisinage de-1 •croissante au voisinage de1 •croissante au voisinage de+∞ •bornée au voisinage de0 Les opérations sur les réels s"étendent aux fonctions de manière naturelle. •addition :f+g D f∩ Dg-→R x?-→(f+g)(x) =f(x) +g(x) •multiplication : fg D f∩ Dg-→R x?-→(fg)(x) =f(x)g(x) •multiplication par un réel : λf D f-→R x?-→(λf)(x) =λ(f(x)) •comparaison : f6g?? ?x? Df∩ Dg, f(x)6g(x) L"addition a les mêmes propriétés que celle des réels : l"ensemble des fonctions deR dansRmuni de l"addition est un groupe commutatif. Muni de l"addition et de la multiplication par un réel, c"est un espace vectoriel. Cependant, le produit de deux fonctions peut être nul sans que les deux fonctions le soient.

1.2 Convergence

Nous commençons par la convergence en un point, vers une limite finie. Afin d"éviter les cas pathologiques, nous supposerons toujours que les fonctions étudiées sont définies au voisinagedu point considéré (cf. définition 2). 2

Maths en LigneLimites et continuitéUJF GrenobleDéfinition 3.Soitaun réel etfune fonction définie au voisinage dea, sauf peut-être

ena, et à valeurs dansR. Soitlun réel. On dit queftend verslquandxtend vers a, ou quefa pour limitelenasi ?ε >0,?η >0,(0<|x-a|6η) =?(|f(x)-l|6ε)(1)

On notera :

lim x→af(x) =lou bienf(x)--→x→al . Tout intervalle centré enlcontient toutes les valeursf(x), pourxsuffisamment proche dea. Observez quefpeut très bien ne pas être définie ena, et admettre quand même une limite ena. Voici un premier exemple (figure 1). f R ?-→R x?-→f(x) =xsin(1/x)

Pour toutx?R?,-16sin(1/x)61. Donc si|x|6εetx?= 0, alors|xsin(1/x)|6ε:-0.30 -0.24 -0.18 -0.12 -0.06 0.00 0.06 0.12 0.18 0.24 0.30

f(x) x f(x)=x sin(1/x)

Figure1 - Graphe de la fonctionx?→xsin(1/x).

f(x)tend vers0quandxtend vers0. La convergence peut se caractériser en termes de suites. Théorème 1.Soitaun réel etfune fonction définie au voisinage dea, sauf peut-être ena, et à valeurs dansR. Soitlun réel. La fonctionftend verslquandxtend vers a, si et seulement si, pour toute suite(xn), à valeurs dansDf\{a}et convergeant vers a, la suite(f(xn))converge versl. Démonstration: Montrons d"abord la condition nécessaire : siftend verslau sens de la définition 3, alors pour toute suite(xn)convergeant versa, la suite(f(xn))tend versl. 3

Maths en LigneLimites et continuitéUJF GrenobleSoitε >0, etηtel que si0<|x-a|6η, alors|f(x)-l|< ε. Soit(xn)une suite

deDf\{a}convergeant versa. Il existen0tel que pour toutn>n0,0<|xn-a|6η. Mais0<|xn-a|6ηentraîne|f(xn)-l|6ε, par hypothèse. Donc la suite(f(xn)) converge versl. Voici maintenant la condition suffisante, dont nous allons démontrer la contraposée : sifne tend pas versl, alors il existe une suite(xn)convergeant versatelle que la suite (f(xn))ne tend pas versl. Ecrivons donc quefne tend pas versl. ?ε >0,?η >0,?x? Df,(0<|x-a|6η)?(|f(x)-l|> ε)

Posonsη= 1/n:

?x? Df,(0<|x-a|61/n)?(|f(x)-l|> ε) Notonsxnun des réels dont l"existence est affirmée ci-dessus. La suite(xn)converge versacar|xn-a|<1/n, pourtant la suite(f(xn))ne tend pas versl, car|f(xn)-l|>ε. Voici deux conséquences faciles de la définition. Proposition 1.Soitfune fonction deRdansRetaun réel.

1. Sif(x)converge quandxtend versa, alors la limite est unique.

2. Sia? Dfet sif(x)converge versl?Rquandxtend versa, alorsfest bornée

au voisinage dea.

Démonstration:

1. Supposons quefvérifie la définition 3 pour deux réelsletl?distincts. Posons

ε=|l-l?|/3. Alors les intervalles[l-ε,l+ε]et[l?-ε,l?+ε]sont disjoints. Pour xsuffisamment proche dea, le réelf(x)devrait appartenir aux deux intervalles

à la fois : c"est impossible.

2. Fixonsε >0, etηtel quef(x)reste dans l"intervalle]l-ε,l+ε[pour tout

0<|x-a|6η. Alors :

?x?[a-η,a+η]∩ Df, f(x)6l+ε et ?x?[a-η,a+η]∩ Df, f(x)>l-ε Doncfest majorée et minorée au voisinage dea. 4 Maths en LigneLimites et continuitéUJF Grenoble1.3 Opérations sur les limites La notion de limite se combine avec les opérations sur les fonctions comme on

l"attend. Nous énoncerons les résultats dans le théorème 2. Ils peuvent se déduire des

résultats analogues sur les suites numériques, via le théorème 1. Nous conseillons au lecteur de le vérifier, puis de comparer cette approche avec les démonstrations directes qui suivent. Elles sont basées sur le lemme suivant. Lemme 1.Soitaun réel. Soientfetgdeux fonctions deRdansR, définies au voisinage dea, sauf peut-être ena. 1. Si lim x→af(x) = limx→ag(x) = 0 alors lim x→a(f+g)(x) = 0

2. Sifest bornée au voisinage deaet

lim x→ag(x) = 0, alors lim x→a(fg)(x) = 0

Démonstration:

1. Fixonsε >0. Soitη1tel que pour0<|x-a|6η1,|f(x)|6ε/2. De même, soitη2

tel que pour0<|x-a|6η2,|g(x)|< ε/2. Alors, pour0<|x-a|6min{η1,η2}, |(f+g)(x)|=|f(x) +g(x)|6|f(x)|+|g(x)|6ε2 +ε2 d"où le résultat.

2. Soitη1etMdeux réels tels que

?x?[a-η1,a+η1],|f(x)|6M . Fixonsε >0. Soitη2tel que pour0<|x-a|6η2,|g(x)|6ε/M. Alors, pour

0<|x-a|6min{η1,η2},

|(fg)(x)|=|f(x)||g(x)|6MεM d"où le résultat. Théorème 2.Soitaun réel. Soientfetgdeux fonctions deRdansR, définies sur un intervalle ouvert autour dea. 5 Maths en LigneLimites et continuitéUJF Grenoble1. Si lim x→af(x) =letlimx→ag(x) =l? alors lim x→a(f+g)(x) =l+l? 2. Si lim x→af(x) =letlimx→ag(x) =l? alors lim x→a(fg)(x) =ll? Démonstration: Pour nous ramener au lemme 1, observons d"abord quef(x)tend verslquandxtend versa, si et seulement sif(x)-ltend vers0.

1. Quandxtend versa,f(x)tend versletg(x)tend versl?, doncf(x)-letg(x)-l?

tendent vers0. Donc f(x)-l+g(x)-l?= (f+g)(x)-(l+l?) tend vers0d"après le point1.du lemme 1. D"où le résultat.

2. Nous voulons montrer quef(x)g(x)-ll?tend vers0. Ecrivons :

f(x)g(x)-ll?=f(x)(g(x)-l?) + (f(x)-l)l?. Il suffit de montrer séparément que les deux fonctionsf(g-l?)et(f-l)l?tendent vers0, d"après le premier point du lemme 1. Mais chacune de ces deux fonctions est le produit d"une fonction convergeant vers0par une fonction bornée au voi- sinage de0(fest bornée au voisinage de0car elle converge). D"où le résultat, par le point2.du lemme 1. Si une application est constante, sa limite en tout point est égale à cette constante. Comme cas particulier du théorème 2, sif(x)tend verslquandxtend versa, etλest un réel quelconque, alors la limite enadeλf(x)estλl. Le résultat attendu sur la composition des limites se vérifie, à un détail près. Théorème 3.Soientaetbdeux réels. Soitfetgdeux fonctions définies respective- ment au voisinage deaet au voisinage deb,gétant définie enb. On suppose : lim x→af(x) =betlimy→bg(y) =g(b). Alors lim x→ag◦f(x) =g(b). 6

Maths en LigneLimites et continuitéUJF GrenobleDémonstration: Soitεun réel strictement positif. Il existeη1>0tel que

|y-b|6η1=? |g(y)-g(b)|6ε

Il existeη2tel que

0<|x-a|6η2=? |f(x)-b|6η1

quotesdbs_dbs19.pdfusesText_25
[PDF] tp mps svt

[PDF] site de recherche de personne gratuit

[PDF] fonction cube definition

[PDF] comment espionner quelqu un a distance

[PDF] tableau de signe fonction cube

[PDF] compte rendu mps seconde raisin

[PDF] mps seconde investigation policière scénario

[PDF] fonction racine cubique

[PDF] fonction cubique graphique

[PDF] conception industrielle définition

[PDF] fonction d'estime définition

[PDF] yaourt mps

[PDF] cours physique mpsi

[PDF] programme maths mpsi

[PDF] programme mpsi maroc