[PDF] [PDF] Chapitre 1 - Fonctions de plusieurs variables Limites dans R





Previous PDF Next PDF



Fonctions de plusieurs variables

1 nov. 2004 Pour une fonction d'une variable f définie au voisinage de 0



Développements limités dune fonction `a deux variables

Ici on va traiter seulement le cas de l'ordre 1 et le cas de l'ordre 2 au voisinage du point (a



1.3 Quelques techniques de calcul des DL

Les formules ci-dessous concernent des développements limités de fonction usuelles 1.5 DL d'ordre 2 pour une fonction de deux variables.



1 Fonctions de plusieurs variables

Le graphe d'une fonction de deux variables est une surface. Un développement limité. `a l'ordre 1 en donnera donc une approximation par un plan : le plan 



Fonctions de plusieurs variables et applications pour lingénieur

Remarque : une fonction f peut ne pas être dérivable ou plusieurs fois dérivable et admettre cependant un développement limité. 2.1.3.4 Formule de Taylor- 



Chapitre 13 : - FONCTIONS DE PLUSIEURS VARIABLES : CALCUL

C 1.15 Si f admet un développement limité du premier ordre en A alors elle admet en ce point une dérivée directionnelle selon toute direction V ? Rn {0} 



Fonctions de plusieurs variables

Cette fonction affine n'est autre que la partie principale du développement limité `a l'ordre 1 de f. Graphiquement cela revient `a approcher le graphe de f 



www.rblld.fr

2 – Fonctions de plusieurs variables : calcul di érentiel D 1.10 On dit que f admet un développement limité du premier ordre au point A s'il existe des.



Fonctions de plusieurs variables

10 avr. 2009 Gradient et courbes de niveau. 5. Extrema. 5.1. Signe d'une forme quadratique en deux variables. 5.2. Développement limité à l'ordre ...



Fonctions de plusieurs variables sur R

2 Continuité d'une fonction de R 3.3 Développement limité d'ordre 1 . ... On appelle fonction numérique à n variables toute fonction f définie sur un ...



[PDF] Fonctions de plusieurs variables

1 nov 2004 · Pour une fonction d'une variable f définie au voisinage de 0 être dérivable en 0 c'est admettre un développement limité `a l'ordre 1



[PDF] 1 Fonctions de plusieurs variables

Ce chapitre est conscré aux fonctions de plusieurs variables c'est-`a-dire définies sur une partie de Rn qu'on appellera son domaine de définition



[PDF] 13 Quelques techniques de calcul des DL

Soient m et n deux entiers naturels tels que n



[PDF] Développements limités dune fonction `a deux variables

Le petit O peut s'écrire aussi comme O(?(x ? a)2 + (y ? b)2) 2 Développement limité d'ordre 2 d'une fonction `a deux variables Définition 2 1 Le 



[PDF] FONCTIONS DE PLUSIEURS VARIABLES : CALCUL DIFFÉRENTIEL

Fonctions de plusieurs variables : calcul di érentiel – 5 C 1 15 Si f admet un développement limité du premier ordre en A alors elle admet en ce point une



[PDF] Chapitre 1 - Fonctions de plusieurs variables Limites dans R

Notre objectif est maintenant d'étudier la régularité des fonctions de plusieurs variables La notion de limite sur laquelle reposent en particulier les 



[PDF] Fonctions de plusieurs variables - Mathématiques

Développement limité Soit f une fonction de deux variables x et y et (x0y0) un point du domaine de définition de f



[PDF] Fonctions de plusieurs variables et applications pour lingénieur

Ce cours présente les concepts fondamentaux de l'Analyse des fonctions de plusieurs variables Les premiers chapitres généralisent les notions de limite 



[PDF] Fonctions de plusieurs variables

10 avr 2009 · Extrema 5 1 Signe d'une forme quadratique en deux variables 5 2 Développement limité à l'ordre 2 et extrema locaux



[PDF] Cours dAnalyse 3 Fonctions de plusieurs variables

Le but de ce cours est de généraliser la notion de dérivée d'une fonction d'une variable réelle à valeurs réelles à partir de la théorie du calcul 

  • Comment calculer la limité d'une fonction à plusieurs variables ?

    L'astuce consiste souvent à trouver deux ensembles A = {(x,h(x))} et B = {(x,k(x))} (h et k fonctions à trouver) tels que lim(x,y)A-->(0,0) f(x,y) est différent de lim(x,y)B-->(0,0) f(x,y). Par exemple, sauf erreur: f(x,y) = xy2 / (x2 + y4), f(0,0) = 0.
  • Comment Etudier une fonction à plusieurs variables ?

    Ainsi, pour une fonction de deux variables (x, y) ?? f(x, y) : — le graphe de f est un sous-ensemble de l'espace R3 muni des coordonnées (x, y, z); — l'ensemble de définition de f est un sous-ensemble du plan horizontal muni des coor- données (x, y); — le dessin des lignes de niveau de f se situe lui-aussi dans le plan
  • Comment déterminer le domaine de définition d'une fonction à plusieurs variables ?

    Si f est une fonction (à 2 ou 3 variables), l'ensemble des valeurs en lesquelles on peut évaluer f est le domaine de définition de f . On note D(f ). f : R×R ? R (x,y) ? 1 x ? y . D(f ) = {(x,y) ? R×R: x = y}.
  • On rappelle que pour étudier la continuité d'une fonction f sur un point il faut : — vérifier si la limite de f au point x0 existe et, si elle existe, la calculer ; — vérifier si la valeur de la limite est égal à f(x0).
[PDF] Chapitre 1 - Fonctions de plusieurs variables Limites dans R

Chapitre 1

Fonctions de plusieurs variables.

Limites dansRn.

Le but principal de ce cours est d"étudier les fonctions de plusieurs variables. En première

année vous avez vu les fonctions d"une seule variable, où un paramètre réel (qui physique-

ment peut représenter une température, une pression, une densité massique, volumique, etc.) dépend d"un autre paramètre, également réel (le temps, une abscisse, etc).

Ici on va donc s"intéresser à des fonctions de plusieurs paramètres réels. Par exemple on

peut vouloir étudier la température, la pression ou la densité volumique en fonction de la position dans l"espace (3 dimensions), de la position et de la vitesse (par exemple quelle est la densité de particules qui se trouve à cet endroit et qui va dans cette direction, ce qui fait 6 dimensions), on peut s"intéresser en plus à la dépendance par rapport au temps (une

dimension supplémentaire). La quantité étudiée peut dépendre de la position deNobjets,

auquel cas on doit travailler avec3Ndimensions. Bref, les exemples ne manquent pas... Notre exemple favori dans ce cours sera celui d"une altitude dépendant de deux para- mètres (latitude et longitude ou, de façon plus abstraite,xety). Il s"agit donc d"une fonction sur un domaine deR2et à valeurs dansR. L"intérêt est que le graphe de cette fonction correspond exactement à la montagne que l"on est en train d"escalader. Mathématiquement, on devra donc étudier des fonctions qui ne sont plus définies sur un intervalle (ou une partie quelconque) deR, mais sur un domaine deRnpour un certain n2N. L"espace d"arrivée pourra êtreRou bienRppour un certainp2N, si la quantité qui nous intéresse est elle-même multi-dimensionnelle. On verra que le fait d"avoir plusieurs

dimensions à l"arrivée n"est pas très génant, alors que le fait d"avoir plusieurs dimensions au

départ va poser un certain nombre de difficultés par rapport à ce que vous connaissez.

Les principales propriétés des fonctions de plusieurs variables auxquelles on va s"intéresser

sont les questions de régularité (continuité, dérivabilité, ...) et leurs conséquences (compor-

tement local d"une fonction, étude des extrema, ...), d"intégration, et enfin le lien entre les

deux.

1.1 Fonctions de plusieurs variables

On considère une partieDdeRn, ainsi qu"une fonctionfdeDdansRp. A tout point x= (x1;:::;xn)2 D 1 Fonctions de plusieurs variables. Limites dansRn.-20 -20 -20 -20 -15 -15 -15 -15 -10 -10 -10 -10 -10 -10 -10 -10 -5 -5 -5 -5 -5 -5 -5 -5 0 0 00 0 0 000 0 00 0 0 00 5 555
5 5 5 5 10 10 10 10 15 15 20 20 -5-4-3-2-1012345 -5 -4 -3 -2 -1 0 1 2 3 4 5 Figure1.2 - Lignes de niveau pour l"application(x;y)7!x2cos(y)et carte IGN avec lignes de niveau pour l"altitude.

1.2 Normes

Notre objectif est maintenant d"étudier la régularité des fonctions de plusieurs variables.

La notion de limite, sur laquelle reposent en particulier les notions de continuité et de dériva-

bilité, s"appuie elle-même sur la notion de proximité entre deux points. Pour une fonctionf deRdansR, on dit quef(x)tend versl2Rquandxtend versa2Rsif(x)est " proche » deldès lors quexest " assez proche » dea. Intuitivement, deux réelsxetysont proches si la valeur absolue (quantité positive)jxyjest petite, en un sens à préciser. Avant de parler de limite pour des fonctions définies surRn, il faut donc donner un sens précis à l"assertion "xest proche dey» lorsquexetysont des points deRn. En fait, on sait déjà mesurer la distance entre deux points deRn. Par exemple pour deux pointsx= (x1;x2)ety= (y1;y2)dansR2, la longueur du segment[x;y]est donnée par d(x;y) =p(x1y1)2+ (x2y2)2: Cette quantité sera appelée distance euclidienne entrexety. Mais ce n"est pas toujours la bonne façon de mesurer la distance entre deux points, comme le montrent les exemples suivants. Considérons un piéton dans une ville organisée par blocs (voir figure 1.3 ), chaque

bloc faisant 500m de côté. Il devra parcourirm pour aller du pointAau pointBetm pour aller du pointAau pointC, alors que les distances euclidiennes (à vol d"oi-

seau) entreAetBet entreAetCsont respectivement dem etm. Marseille Figure1.3 - Les villes américaines et les déplacements en normel1.

est plus proche de Paris que de Toulouse si on regarde le temps de parcours par le train,Année 2013-2014 3

L2 Parcours Spécial -Calcul différentiel et intégralalors que c"est quasiment deux fois plus loin en termes de kilomètres par la route. Ainsi il y

a différentes façons de mesurer la distance entre deux points, et il n"y en a pas de bonnes ou de mauvaises : chacune est plus ou moins bien adaptée à chaque contexte. Définition 1.3.SoitEunR-espace vectoriel. On appelle norme surEune application N:E!R+qui vérifie les propriétés suivantes : (i)8x2E; N(x) = 0()x= 0(séparation), (ii)8x2E;82R; N(x) =jjN(x)(homogénéité), (iii)8(x;y)2E2; N(x+y)6N(x) +N(y)(inégalité triangulaire). Étant donnée une normeNsurE, on appelle distance associée àNl"application d

N:E2!R+

(x;y)7!N(xy) On note que toutes les distances ne sont pas obtenues de cettes façons, mais on ne s"attardera pas sur ces questions dans ce cours (voir tout de même les exercices 14 et 15 , plus de détails seront donnés dans le cours d"approfondissements mathématiques). Exercice1.Montrer que la valeur absolue est une norme surR.

Proposition 1.4.Pourx= (x1;:::;xn)2Rnon note

kxk2=v uutn X j=1jxjj2:

Alors l"applicationx7! kxk2est une norme surRn.

Démonstration.Les propriétés de séparation et d"homogénéité sont faciles et laissées en exer-

cice. Pour montrer l"inégalité triangulaire, on considère deux pointsx= (x1;:::;xn)et y= (y1;:::;yn)deRn. Six+y= 0alors le résultat est clair. Sinon on a d"après l"inégalité de Cauchy-Schwarz kx+yk2 2=nX j=1(xj+yj)2=nX j=1x j(xj+yj) +nX j=1y j(xj+yj) 6 v uutn X j=1x 2jv uutn X j=1(xj+yj)2+v uutn X j=1yquotesdbs_dbs2.pdfusesText_2
[PDF] recherche opérationnelle exercices corrigés gratuit

[PDF] programmation linéaire exercices corrigés simplex

[PDF] examen recherche opérationnelle corrigé

[PDF] exercice corrigé methode simplexe pdf

[PDF] multiples et sous multiples physique

[PDF] multiples et sous multiples physique exercices

[PDF] multiples et sous multiples du gramme

[PDF] multiple et sous multiple exercice

[PDF] multiples et sous multiples du litre

[PDF] multiplicateur fiscal formule

[PDF] multiplicateur fiscal macroéconomie

[PDF] cobb douglas explication

[PDF] revenu d'équilibre formule

[PDF] multiplicateur des dépenses publiques macroéconomie

[PDF] fonction de cobb douglas pdf