[PDF] Cours de Statistiques inférentielles





Previous PDF Next PDF



Fonction de distribution cumulative

On peut donner les résultats d'une étude statistique en fréquences plutôt qu'en effectifs. Modalités m1 m2 ··· mp. Fréquences f1.



Étude de la structure locale par la fonction de distribution de paires

des pics dépend de la distribution des distances autour d'une valeur moyenne soit à cause des vibrations thermiques ou d'une distribution statistique 



Cours de Statistiques inférentielles

Nous allons chercher à faire l'inverse : l'inférence statistique consiste à La fonction de distribution cumulée F(x) exprime la probabilité que X ...



Physique statistique

Fonction de distribution .. Définition. On veut s'intéresser au nombre de particule dN tel que la position ?? r et la quantité de mouvement ??.



Microsoft Office Word - A3 Final French glossary proofr

DISTRIBUTION DE PROBABILITE. Définition statistique : Fonction indiquant la probabilité pour qu'une variable aléatoire prenne une.



Estimation de la fonction de repartition: revue bibliographique

10-Sept-2012 The estimation of the distribution function of a real random variable is ... Journal de la Société Française de Statistique 150(2)



Test de Kolmogorov-Smirnov sur la validité dune fonction de

La solution d'un grand nombre problèmes statistiques implique la con- naissance de la distribution de la variable aléatoire X soumise au contrôle . La 



LES LOIS DE PROBABILITE POUR LES FONCTIONS

Le résultat en question est: Pour toute fonction statistique. ( ). f S x sous certaines conditions la distribution tend vers la Gaussienne.



STATISTIQUE DESCRIPTIVE

On connaît plusieurs distributions statistiques particulières donnant la fréquence théorique d'apparition d'une valeur x en fonction de x ( on reviendra en 



Le rôle de la distribution normale en statistique

de statistique élémentaire destiné à des étudiants en sciences humaines que les fonctions de répartition) de plusieurs de ces distributions (en ...



[PDF] S1-2 Distribution statistique et valeurs centrales

1 1 La distribution statistique Ensemble ordonné des valeurs prises par le caractère X pour les éléments de l'ensemble E Image d'une distribution 



[PDF] Premi`eres notions de statistique statistiques descriptives

Echantillon Distribution Moments Quantiles Mod`eles Estimation IC Compléments La fonction de répartition empirique F Picard 17/84 



[PDF] Chapitre V Données et Statistiques Distributions

statistiques à partir d'un ensemble de données où plus généralement l'on introduit la notion de distribution des données discrète et continue et



[PDF] Cours de Statistiques niveau L1-L2 - HAL

7 mai 2018 · Fonction de répartition empirique 4 Indicateurs statistiques Indicateurs de localisation ou de tendance centrale



[PDF] STATISTIQUE DESCRIPTIVE

Le diagramme cumulatif est la représentation graphique d'une fonction F appelée fonction de répartition de la variable statistique Exemple : nombre d'erreurs 



[PDF] Sur les fonctions statistiques - Numdam

statistique Soient V\( 2?) une distribution fixe et V^-une distribution variable toutes les deux appartenant à l'ensemble convexe E sur lequel la fonction 



[PDF] Statistique Appliquée

Fonction de Probabilité Statistique Descriptive 67 Quelques définitions Distribution de la différence des moyennes (1/6) - rappel #98



[PDF] Cours probabilités et statistiques

Variable aléatoire : le début Fonction de répartition Cours probabilités et statistiques C Tuleau-Malot Université de Nice - Sophia Antipolis



[PDF] Introduction `a la statistique - Université de Limoges

— Le polygone des effectifs ou des fréquences d'une distribution statistique groupé est obtenu en joignant dans l'histogramme de cette distribution les milieux 



[PDF] Résumé du Cours de Statistique Descriptive - UniNE

15 déc 2010 · 24CHAPITRE 1 VARIABLES DONN ÉES STATISTIQUES TABLEAUX EFFECTIFS Figure 1 10 – Fonction de répartition d'une distribution groupée

  • Comment calculer la fonction de distribution ?

    Définition 1 La fonction de répartition (f.d.r.) de la variable aléatoire X sur R est la fonction suivante : FX (x) = P(X ?] ? ?,x]) = P(X ? x). FX (x)=1. 2. Comme FX est croissante, elle admet une limite `a gauche en chaque point, limite qu'on notera FX (x?).
  • Comment décrire une distribution statistique ?

    En statistique, la distribution statistique, distribution empirique ou distribution des fréquences, est un tableau qui associe des classes de valeurs obtenues lors d'une expérience à leurs fréquences d'apparition. Ce tableau de valeurs est modélisé en théorie des probabilités par une loi de probabilité.
  • Quelle est la loi de distribution la plus utilisée en statistique ?

    La loi normale, ou courbe de Gauss ou courbe en cloche (« bell curve »), est extrêmement fréquente dans la nature comme dans les applications statistiques, du fait du théorème central limite : tout phénomène modélisable comme une somme de nombreuses variables indépendantes, de moyenne et variance finies, a une
  • Elles sont au nombre de cinq : les caractéristiques de tendance centrale, de dispersion, de position de forme et de concentration.
Cours de Statistiques inférentielles

Licence 2-S4 SI-MASS

Année 2018Cours de Statistiques inférentielles

Pierre DUSART

2

Chapitre1Lois statistiques

1.1 Introduction

Nous allons voir que si une variable aléatoire suit une certaine loi, alors ses réalisations (sous forme

d"échantillons) sont encadrées avec des probabilités de réalisation. Par exemple, lorsque l"on a une énorme

urne avec une proportionpde boules blanches alors le nombre de boules blanches tirées sur un échan-

tillon de taillenest parfaitement défini. En pratique, la fréquence observée varie autour depavec des

probabilités fortes autour depet plus faibles lorsqu"on s"éloigne dep.

Nous allons chercher à faire l"inverse : l"inférence statistique consiste à induire les caractéristiques in-

connues d"une population à partir d"un échantillon issu de cette population. Les caractéristiques de

l"échantillon, une fois connues, reflètent avec une certaine marge d"erreur possible celles de la population.

1.1.1 Fonction de répartition

La densité de probabilitép(x)ou la fonction de répartitionF(x)définissent la loi de probabilité d"une

variable aléatoire continueX. Elles donnent lieu aux représentations graphiques suivantes :Figure1.1 - fonction répartition

La fonction de distribution cumuléeF(x)exprime la probabilité queXn"excède pas la valeurx:

F(x) =P(Xx):

De même, la probabilité que X soit entreaetb(b > a) vaut

P(a < X < b) =F(b)F(a):

4CHAPITRE 1. LOIS STATISTIQUES1.1.2 Grandeurs observées sur les échantillons

L"espéranceE(X)d"une variable aléatoire discrèteXest donnée par la formule

E(X) =X

ix iP(xi): L"espérance est également appelée moyenne et notée dans ce casX. Sa variance2Xest l"espérance des carrés des écarts avec la moyenne :

2X=E[(XX)2] =X

i(xiX)2P(xi) =X ix

2iP(xi)2X:

Son écart-typeXest la racine positive de la variance.

1.2 Lois usuelles

1.2.1 Loi normale ou loi de Gauss

Une variable aléatoire réelleXsuit une loi normale (ou loi gaussienne, loi de Laplace-Gauss) d"espérance

et d"écart type(nombre strictement positif, car il s"agit de la racine carrée de la variance2) si cette

variable aléatoire réelleXadmet pour densité de probabilité la fonctionp(x)définie, pour tout nombre

réelx, par : p(x) =1 p2e12 (x )2: Une telle variable aléatoire est alors dite variable gaussienne.

Une loi normale sera notée de la manière suivanteN(;)car elle dépend de deux paramètres(la

moyenne) et(l"écart-type). Ainsi si une variable aléatoireXsuitN(;)alors

E(X) =etV(X) =2:

Lorsque la moyennevaut 0, et l"écart-type vaut 1, la loi sera notéeN(0;1)et sera appelée loi normale

standard. Sa fonction caractéristique vautet2=2. Seule la loiN(0;1)est tabulée car les autres lois (c"est-

à-dire avec d"autres paramètres) se déduise de celle-ci à l"aide du théorème suivant : SiYsuitN(;)

alorsZ=Y suitN(0;1). On notela fonction de répartition de la loi normale centrée réduite : (x) =P(Z < x) avecZune variable aléatoire suivantN(0;1).

Propriétés et Exemples :(x) = 1(x),

(0) = 0:5;(1:645)0:95;(1:960)0:9750

Pourjxj<2, une approximation depeut être utilisée; il s"agit de son développement de Taylor à

l"ordre 5 au voisinage de 0 : (x)0:5 +1p2 xx36 +x540

Inversement, à partir d"une probabilité, on peut chercher la borne pour laquelle cette probabilité est

effective. Cours Proba-Stat / Pierre DUSART5Notation : on noteraz=2le nombre pour lequel

P(Z > z=2) ==2

lorsque la variable aléatoire suit la loi normale standard.risque0:010:020:050:10valeur critiquez=22:582:331:961:645coefficient de sécuritéc99%98%95%90%

A l"aide des propriétés de la loi normale standard, on remarque que le nombrez=2vérifie également

P(Z < z=2) =

P(Z

P(z=2< Z < z=2) =

P(jZj> z=2) =

La somme de deux variables gaussiennes indépendantes est elle-même une variable gaussienne (stabilité) :

SoientXetYdeux variables aléatoires indépendantes suivant respectivement les loisN(1;1)et N(2;2). Alors, la variable aléatoireX+Ysuit la loi normaleN(1+2;p

21+22).

1.2.2 Loi du2(khi-deux)

Définition 1SoitZ1;Z2;:::;Zune suite de variables aléatoires indépendantes de même loiN(0;1).

Alors la variable aléatoireP

i=1Z2isuit une loi appeléeloi du Khi-deuxàdegrés de liberté, notée 2(). Proposition 1.2.11. Sa fonction caractéristique est(12it)=2.

2. La densité de la loi du2()est

f (x) = 12 =2(=2)x=21ex=2pourx >0

0sinon.

oùest la fonction Gamma d"Euler définie par(r) =R1

0xr1exdx.

3. L"espérance de la loi du2()est égale au nombrede degrés de liberté et sa variance est2.

4. La somme de deux variables aléatoires indépendantes suivant respectivement2(1)et2(2)suit

aussi une loi du2avec1+2degrés de liberté. PreuveCalculons la fonction caractéristique deZ2lorsqueZsuitN(0;1). '(t) =E(eitZ2) =Z 1 1 eitz21p2ez2=2dz 1p2Z 1 1 e12 (12it)z2dz 1p2Z 1 1e 12 u2(12it)1=2dten posantu= (12it)1=2z '(t) = (12it)1=2 Maintenant pour la somme devariablesZ2iindépendantes, on a '(t) = (12it)=2:

6CHAPITRE 1. LOIS STATISTIQUESMontrons maintenant que la fonction de densité est correcte. Pour cela, calculons la fonction caractéris-

tique à partir de la densité : '(t) =E(eitx) =Z +1 0 eitx12 =2(=2)x=21ex=2dx 12 =2(=2)Z +1 0 x(1=2it)xdx 12 =2(=2)1(1=2it)(1=2it)=21Z +1 0 u=21euduen posantu= (1=2it)x 12 =2(=2)1(1=2it)=2Z +1 0 u=21eudu |{z} =(=2) '(t) =1(12it)=2

Calculons maintenant l"espérance et la variance. Selon la définition de la loi du2, chaque variable

Z isuit la loi normale centrée réduite. AinsiE(Z2i) =V ar(Zi) = 1etE(P i=1Z2i) =. De même, V(Zir) =E(Z4i)(E(Z2i))2=41:On sait que pour une loi normale centrée réduite4= 3donc

V ar(Z2i) = 2etV ar(P

i=1Z2i) = 2: La dernière proposition est évidente de par la définition de la loi du2.

Fonction inverse: on peut trouver une tabulation de la fonction réciproque de la fonction de répartition

de cette loi dans une table (en annexe) ou sur un logiciel tableur :

7!2;(FonctionKHIDEUX.inverse(;));

c"est-à-dire la valeur de2;telle queP(2()> 2;) =. Exemple : Pour= 0:990et= 5,2= 0:554 =20:99;5.Figure1.2 - fonction2inverse

1.2.3 Loi de Student

Définition 2SoientZetQdeux variables aléatoires indépendantes telles queZsuitN(0;1)etQsuit

2(). Alors la variable aléatoire

T=ZpQ=

suit une loi appeléeloi de Studentàdegrés de liberté, notéeSt().

Cours Proba-Stat / Pierre DUSART7Proposition 1.2.21. La densité de la loi de la loi de Student àdegrés de liberté est

f(x) =1p +12 )(=2)1(1 +x2=)+12

2. L"espérance n"est pas définie pour= 1et vaut 0 si2. Sa variance n"existe pas pour2et

vaut=(2)pour3.

3. La loi de Student converge en loi vers la loi normale centrée réduite.

Remarque : pour= 1, la loi de Student s"appelle loi de Cauchy, ou loi de Lorentz.

1.2.4 Loi de Fisher-Snedecor

Définition 3SoientQ1etQ2deux variables aléatoires indépendantes telles queQ1suit2(1)etQ2 suit2(2)alors la variable aléatoire

F=Q1=1Q

2=2 suit une loi de Fisher-Snedecor à(1;2)degrés de liberté, notéeF(1;2).

Proposition 1.2.3La densité de la loiF(1;2)est

f(x) =(1+22 )(1=2)(2=2) 1 2

1=2x1=21(1 +

1 2x) 1+22 six >0 (0sinon):

Son espérance n"existe que si23et vaut2

22. Sa variance n"existe que si25et vaut22

2(1+22)

1(22)2(24).

Proposition 1.2.41. SiFsuit une loi de FisherF(1;2)alors1F suit une loi de FisherF(2;1).

2. SiTsuit une loi de Student àdegrés de liberté alorsT2suit une loi de FisherF(1;).

1.2.5 Fonctions inverses et TableurLoiNotationVariableFct RépartitionV. critiqueFonction inverse

GaussN(0;1)Zloi.normale.standard(z)z

quotesdbs_dbs2.pdfusesText_2

[PDF] produit scalaire deux vecteurs

[PDF] produit vectoriel de deux vecteurs dans le plan

[PDF] fonction de répartition d une variable aléatoire discrète

[PDF] multiplication coordonnées vecteurs

[PDF] variance

[PDF] multiplication d'un vecteur par un réel exercices

[PDF] produit vectoriel de deux vecteurs de dimension 2

[PDF] carré d'un vecteur

[PDF] multiplication de deux vecteurs colonnes

[PDF] produit scalaire vecteur 3d

[PDF] le resultat d'une multiplication s'appelle

[PDF] division vocabulaire

[PDF] vocabulaire multiplication

[PDF] loi géométrique probabilité exercices

[PDF] la santé définition