[PDF] Continuité et dérivabilité dune fonction





Previous PDF Next PDF



Continuité et dérivabilité dune fonction

7 nov. 2014 Fonction f discontinue en 2 lim x?2+ f (x) = 3 = f (2) ... Si f est dérivable sur un intervalle I alors la fonction f est continue sur I.



Exemples de fonctions discontinues Continuité et dérivabilité dune

fonction définie par morceaux est continue/dérivable. 1 Deux Rappels et une nouvelle définition. On se donne une fonction f : I ? R définie sur un 



1.5 Les fonctions non dérivables

Certains points d'une courbe peuvent ne pas avoir de dérivée. Les fonctions discontinues sont non dérivables en tout point où elles sont discontinues. Certaines 



Dérivation des fonctions

Si une fonction f est dérivable en x0 alors f est continue en x0. f discontinue aux bornes de l'intervalle f ne s'annule pas.



Leçon 228: Continuité et dérivabilité des fonctions de la variable

26 déc. 2012 Soit f : I ? R une fonction dérivable sur A ? I. La fonction ... 5 (Limite simple d'une suite de fonctions continues qui est discontinue).



Limites continuité

Théor`eme de Rolle et



Fonctions sans primitive

(Pour être dérivable elle doit déjà être continue ce qui suppose c¢ = c Parmi les fonctions discontinues



Une fonction non continue qui admet des primitives Étude dune

dérivables et puisque x x2 est dérivable



FONCTIONS DE CLASSE C1

Une fonction numérique f d?une variable réelle définie sur un intervalle I est dite de classe 1. C si elle est dérivable sur cet intervalle et si sa dérivée 



Suites de fonctions

vers une fonction dérivable et constater que la suite ( . ?) ??? ne converge pas. Convergence simple vers une fonction discontinue.



[PDF] Continuité et dérivabilité dune fonction définie par morceaux

On rappelle que si une fonction est dérivable sur un intervalle I (ou bien en un réel x0 ? I) alors elle est continue sur l'intervalle I (ou bien en x0 ? I)



[PDF] Continuité et dérivabilité dune fonction - Lycée dAdultes

7 nov 2014 · Si f est dérivable sur un intervalle I alors la fonction f est continue sur I La réciproque de ce théorème est fausse Remarque : La réciproque 



[PDF] Dérivation des fonctions

On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I On note f la fonction dérivée de f qui à tout x ?I 



[PDF] 15 Les fonctions non dérivables

Certains points d'une courbe peuvent ne pas avoir de dérivée Les fonctions discontinues sont non dérivables en tout point où elles sont discontinues Certaines 



[PDF] Chapitre 3 Dérivabilité des fonctions réelles

Dans tout ce chapitre I désigne un intervalle non vide de R Définition 3 1 1 Soit f : I ? R une fonction et soit x0 ? I On dit que f est dérivable



[PDF] Fonctions continues et dérivables

Fonctions continues et dérivables Si y = f(x) est une fonction on dit que x est une préimage et y est l'image de cette est discontinue en x = 0



[PDF] Leçon Continuité dérivabilité des fonctions réelles dune variable

Exemple fonction dérivable en 0 mais discontinue ailleurs (propriété ponctuelle) Théorème Théorème fondamental de l'analyse Définition C





[PDF] CONTINUITÉ DES FONCTIONS - maths et tiques

Théorème : Si une fonction est dérivable sur un intervalle alors elle est continue sur cet http://www maths-et-tiques fr/telech/Algo_SolEqua pdf



[PDF] Continuité en un point Contimritê sr:r un intervalle

La fonction racine carrée est contime sur (0 +ool mais n'est pas dérivable en 0 On a ainsi deux exemples de fonctions continues et non dérivables en un point 

  • Comment montrer qu'une fonction est discontinue ?

    La fonction g est discontinue en x0. Autrement dit, on voit graphiquement qu'une fonction est continue en un point x0 si la courbe passe par le point M0(x0 ; ƒ(x0)) sans coupure. Sinon, la fonction est discontinue en ce point.
  • Quand une fonction est discontinue ?

    Intuitivement, une fonction discontinue est une fonction dont on ne peut tracer le graphique sans « lever le crayon du papier ». Dans le graphique ci-contre, vous retrouverez une fonction affine par parties présentant des « sauts ».
  • Comment savoir si la fonction est derivable ?

    On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ?I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g ? fg g2 . f (x) = ax + b cx + d .
  • Une fonction �� ( �� ) est continue si elle respecte les trois conditions suivantes :

    �� doit être défini en �� ( �� appartient à l'ensemble de définition de �� ) ;l i m ? ? ? �� ( �� ) doit exister ;l i m ? ? ? �� ( �� ) et �� ( �� ) doivent avoir la même valeur.
DERNIÈRE IMPRESSION LE7 novembre 2014 à 10:23

Continuité et dérivabilité d"unefonction

Table des matières

1 Continuité d"une fonction2

1.1 Limite finie en un point. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Continuité en un point. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Continuité des fonctions usuelles. . . . . . . . . . . . . . . . . . . . 3

1.4 Théorème du point fixe. . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Continuité et dérivabilité. . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Continuité et équation. . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Dérivabilité6

2.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Interprétations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Interprétation graphique. . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Interprétation numérique. . . . . . . . . . . . . . . . . . . . 8

2.2.3 Interprétation cinématique. . . . . . . . . . . . . . . . . . . 8

2.3 Signe de la dérivée, sens de variation. . . . . . . . . . . . . . . . . . 9

2.4 Dérivée et extremum local. . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Dérivées des fonctions usuelles. . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Dérivée des fonctions élémentaires. . . . . . . . . . . . . . . 11

2.5.2 Règles de dérivation. . . . . . . . . . . . . . . . . . . . . . . 11

2.5.3 Exemples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

PAULMILAN1 TERMINALES

TABLE DES MATIÈRES

1 Continuité d"une fonction

1.1 Limite finie en un point

Définition 1 :Dire qu"une fonction

fa pour limite?ena, signifie que tout intervalle ouvert contenant?contient toutes les valeurs def(x)pourxassez proche dea- c"est à dire pour lesxd"un intervalle]a-η;a+η[. On note alors : lim x→af(x) =? a a+ηa-ηC f O?? Remarque :Parfois la fonctionfn"admet pas une limite ena, mais admet une limite à droite et une limite à gauche. C"est le cas de la fonction partie entièreE (voir plus loin). On a par exemple : limx→2-E(x) =1 et limx→2+E(x) =2

1.2 Continuité en un point

Définition 2 :Soit une fonctionfdéfinie sur un intervalle ouvert I. Soitaun élément de I. On dit que la fonctionfestcontinueenasi et seulement si : lim x→af(x) =f(a) La fonctionfestcontinue sur un intervalle Isi, et seulement si,fest continue en tout point de I. Remarque :Graphiquement, la continuité d"une fonctionfsur un intervalle I se traduit par une courbe en un seul morceau. 123

1 2 3 4 5-1

]Cf O

Fonctionfdiscontinue en 2

limx→2+f(x) =3?=f(2) 123

1 2 3 4 5-1

Cf O

Fonctionfcontinue sur[-1,5; 5,5]

La fonction de gauche représente une discontinuité par "saut". C"est le cas par exemple de la fonction partie entière ou plus pratiquement de la fonction qui représente les tarifs postaux en fonction du poids (brusque changement de tarif entre les lettres en dessous de 20 g et de celles entre 20 g et 50 g).

PAULMILAN2 TERMINALES

1. CONTINUITÉ D"UNE FONCTION

D"autres discontinuités existent. C"est par exemple le cas en 0 de lafonctionf définie parf(x) =sin1 xpourx?=0 etf(0) =0. ?x?R,?n?Z,n?xLafonction partie entièreEest alors définie par :E(x) =n

E(2,4) =2 ;E(5) =5 ;E(-1,3) =-2

On observe alors un "saut" de la fonction pour

chaque entier. La fonction partie entière n"est donc pas continue pourxentier. 123
-1 -21 2 3 4-1-2 O

Soit la fonctionfdéfinie par :???f(x) =sin1

xpourx?=0 f(0) =0

La fonctionfn"est pas continue en 0 bien qu"on

n"observe ici aucun "saut". La fonction oscille de plus en plus autour de 0 si bien qu"au voisi- nage de 0, la fonction tend vers une oscillation infinie qui explique la non continuité. 1 -11-1O

1.3 Continuité des fonctions usuelles

Propriété 1 :Admis

•Les fonctions polynômes sont continues surR. •La fonction inversex?→1xest continue sur]-∞;0[et sur]0;+∞[ •La fonction valeur absoluex?→ |x|est continue surR. •La fonction racine carréex?→⎷xest continue sur[0;+∞[ •Les fonctionsx?→sinxetx?→cosxsont continues surR •D"une façon générale, toutes fonctions construites par opération ou par com- position à partir des fonctions ci-dessus sont continues sur leur ensemble de définition, en particulier les fonctions rationnelles.

1.4 Théorème du point fixe

Théorème 1 :Théorème du point fixe

Soit une suite(un)définie paru0etun+1=f(un)convergente vers?. Si la fonction associéefest continue en?, alors la limite de la suite?est solution de l"équationf(x) =x.

PAULMILAN3 TERMINALES

TABLE DES MATIÈRES

Démonstration :

On sait que la suite(un)est convergente vers?donc : limn→+∞un=? De plus, la fonctionfest continue en?donc : limx→?f(x) =f(?)

Par composition, on en déduit que : lim

n→+∞f(un) =f(?)?limn→+∞un+1=f(?) or lim Exemple :Reprénons l"exemple du chapitre 2, soit la suite(un) ?u0=0 u n+1=? 3un+4 On a montré que la suite(un)était positive, croissante et majorée par 4, elle est donc convergente vers?. La fonctionx?→⎷

3x+4 est continue sur[0;4], donc?

est solution de l"équationf(x) =x.

3x+4=xon élève au carré

3x+4=x2

x

2-3x-4=0

Cette équation a-1 et 4 comme solution. Or on sait queun?0. On en déduit que la seule solution acceptable est 4. La suite(un)converge vers 4.

1.5 Continuité et dérivabilité

Théorème 2 :Admis

•Sifest dérivable enaalors la fonctionfest continue ena. •Sifest dérivable sur un intervalle I alors la fonctionfest continue sur I. ?La réciproque de ce théorème est fausse Remarque :Laréciproquedecethéorèmeestfausse.Pours"enrendrecompte,on peut s"appuyer surunereprésentation graphique.Siunefonction est continuesur un intervalle, sa représentation graphique est en un seul morceau. Sila fonction est dérivable, sa représentation graphique admet une tangente en chacun de ses points. Un petit exemple :

La fonction dont la représentation est

ci-contre, est bien continue ena, car la courbe est en un seul morceau.

Par contre, la fonction n"est pas déri-

vable ena, car la représentation admet au point A deux demi-tangentes.

Onditquelacourbeadmetunpointan-

guleux A O a?

PAULMILAN4 TERMINALES

1. CONTINUITÉ D"UNE FONCTION

La fonction valeur absoluex?→ |x|est continue mais pas dérivable en 0.

1.6 Continuité et équation

Théorème 3 :Théorème des valeurs intermédiaires Soit une fonctioncontinuesur un intervalle I= [a,b]. Pour tout réelkcompris entref(a)etf(b), il existe un réelc?I tel quef(c) =k.

Remarque :Ce théorème est admis.

Ce théorème résulte du fait que l"image

d"un intervalle deRpar une fonction continue est un intervalle deR

Voici une illustration graphique. Icik

est bien compris entref(a)etf(b).

L"équationf(x) =kadmet donc des so-

lutions.

Le fait quecexiste ne veut pas dire

qu"il soit unique. Dans notre exemple, il existe ainsi trois valeurs pourc. abf(a) f(b)k c

1c2c3O

Théorème 4 :Théorème des valeurs intermédiaires bis Soit une fonctionfcontinue et strictement monotonesurI= [a,b]. Pour tout réelkcompris entref(a)etf(b), l"équationf(x) =ka une unique solution dans I= [a,b] Démonstration :L"existence découle du théorème précédent, et l"unicité de la monotonie de la fonction.

Remarque :

•On généralise ce théorème à l"intervalle ouvertI=]a,b[.kdoit alors être com- pris entre limx→af(x)et limx→bf(x) •Lorsquek=0, on pourra montrer quef(a)×f(b)<0.

•Ce théorème est parfois appelé le théorème de la bijection car lafonction réalise

une bijection de I surf(I). •Un tableau de variation pourra être suffisant pour montrer la continuitéet la monotonie de la fonction. Exemple :Soit la fonctionfdéfinie surRpar :f(x) =x3+x-1. Montrer que l"équationf(x) =0 n"admet qu"une solution surR. On donnera un enca- drement à l"unité de cette solution. Trouver ensuite, à l"aide d"un algorithme un encadrement à 10 -6de cette solution.

PAULMILAN5 TERMINALES

TABLE DES MATIÈRES

123
-1 -20.5 1.0 1.5 Oα

La fonctionfest une fonctioncontinuesurRcarf

est un polynôme.

La fonctionfest la somme de deux fonctions crois-

quotesdbs_dbs41.pdfusesText_41
[PDF] exemple fonction discontinue

[PDF] cycle acrosport niveau 3

[PDF] comment trouver un equivalent d'une fonction

[PDF] fonctions équivalentes usuelles

[PDF] fonctions excel pdf

[PDF] alphabet acrosport

[PDF] section de recherche saison 8 replay

[PDF] les paramètres du son 6eme

[PDF] les parametres du son education musicale

[PDF] recherche excel

[PDF] les parametres du son college

[PDF] musique sur les camps de concentration

[PDF] j'traine des pieds karaoké

[PDF] j'traine des pieds analyse

[PDF] j'traine des pieds wikipedia