[PDF] [PDF] Fonctions trigonométriques réciproques





Previous PDF Next PDF



1) Fonction reciproque 2) Propriete de la fonction reciproque

C I l'ensemble des fonctions continues et strictement monotones sur I. 1) Fonction reciproque. Theoreme : Si. ( ) m f C I.



Fonctions usuelles et réciproques Fiche de cours

L'application réciproque de ln est la fonction exponentielle c'est-à-dire. ∀x ∈ R ∀y ∈]0



Fonctions réciproques

Théorème 1 Si f est une fonction bijective continue sur un intervalle alors sa fonction réciproque f L1 est aussi continue. 11.1.5 Fonction réciproque – Graphe.



1 Fonction réciproque

D'où : Arccos/(x) = −. 1. √1. − x2. IUT de Cachan GEII2. 5. Page 6. 1.3 Arccos - Arcsin - Arctan. 1 FONCTION RÉCIPROQUE. La courbe représentative de Arccos 



Fonctions réciproques

Théor`eme 1 : Toute fonction f définie sur un intervalle I continue et strictement monotone sur cet intervalle réalise une bijection de cet intervalle I 



Composition de fonctions dérivées successives et fonction réciproque

12 oct. 2017 Exemple : Soit la fonction h définie sur ] − ∞;1] par h(x) = √1 − x. 1) Décomposer h en deux fonctions élémentaires. 2) Déterminer les ...



Chapitre 7 Fonctions réciproques et nouvelles fonctions usuelles

ln1 pxq “. 1 x . 7.2 Fonctions trigonométriques réciproques. Les fonction trigonométriques (sinus cosinus





Résumé : Fonctions réciproques Niveau : Bac sciences Résumé : Fonctions réciproques Niveau : Bac sciences

: Fonctions réciproques. Niveau : Bac sciences expérimentales. Réalisé par : Prof. Benjeddou Saber. Email : saberbjd2003@yahoo.fr. Soit un intervalle de ℝ et ...



Feuille dexercices 7 Fonctions trigonométriques réciproques

Fonctions trigonométriques réciproques. Exercice 1. 1. Montrer que. 0 < arccos Sur quel ensemble cette fonction est-elle définie et continue ? (Soyez ...



1) Fonction reciproque 2) Propriete de la fonction reciproque

C I l'ensemble des fonctions continues et strictement monotones sur I. 1) Fonction reciproque. Theoreme : Si. ( ) m f C I.



Fonction réciproque

Fonction réciproque. Christelle MELODELIMA VII. Fonctions logarithmes et exponentielles de base quelconque a. 1. Fonctions logarithmiques (a>0 et a ?1) ...



Fonctions réciproques

Théorème 1 Si f est une fonction bijective continue sur un intervalle alors sa fonction réciproque f L1 est aussi continue. 11.1.5 Fonction réciproque – Graphe.



Chapitre12 : Fonctions circulaires réciproques

?. MPSI Mathématiques. Analyse réelle et complexe. 3. Page 4. III. LA FONCTION Arctan. CHAPITRE 12. FONCTIONS CIRCULAIRES RÉCIPROQUES. ‚ La fonction cos est 



Chapitre 7 Fonctions réciproques et nouvelles fonctions usuelles

ln1 pxq “. 1 x . 7.2 Fonctions trigonométriques réciproques. Les fonction trigonométriques (sinus cosinus



Chapitre 2 : Fonctions rciproques

Théorème : Si f continue strictement monotone sur I alors f réalise une bijection de I sur f (I). * On note f. -1 la fonction réciproque de f.



Fonctions usuelles et réciproques Fiche de cours

L'application réciproque de ln est la fonction exponentielle c'est-à-dire. ?x ? R ?y ?]0



La réciproque f?1 dune fonction bijective f.

Nous énonçons les propriétés fondamentales de la fonction réciproque f?1 par rapport. `a la fonction f: 1. Seules les fonctions bijectives peuvent avoir une 



2.2 Graphe dune fonction numérique – définition 2.3 Réciproque

Tracé du graphe de la fonction inverse f : x ?. 1 x définie sur Df = R?. 2.3 Réciproque composition des fonctions. Définition 16 (Réciproque).



Définition : Bijection Définition : Fonction réciproque Résumé

Bac Sc. expérimentales – Résumé : Fonctions réciproques. Définition : "Bijection" Soit un intervalle de ? et une fonction définie sur .



[PDF] Fonctions réciproques

Dèfinition 1 (Fonctions réciproque) Si f est une application de X dans Y et g est une application de Y dans X telles que — f (g (y)) = y pour tout y ? Y — g 



[PDF] 1) Fonction reciproque 2) Propriete de la fonction reciproque

Exposé 65 : Fonction reciproque d'une fonction continue strictement monotone sur un intervalle de » Exemple Pre requis : - notion d'intervalle - bijection



[PDF] Fonctions réciproques

BTS MAI 2 Chap 8 : Fonctions réciproques I Définition Théor`eme 1 : Toute fonction f définie sur un intervalle I continue et strictement monotone sur



[PDF] Dérivation de fonctions réciproques

Dérivation de fonctions réciproques- Fonctions élémentaires Exercice 1: Montrer que les fonctions ƒ et g admettent une fonction réciproque que l'on



[PDF] La notion de fonction réciproque et son enseignement

Puis nous exposons quelques fonctions réciproques de références avec lesquelles travaillent les enseignants du secondaire et du post-secondaire Enfin nous



[PDF] Fonctions usuelles et réciproques Fiche de cours

Si f est une fonction bijective de E dans F alors f?1 est définie de F dans E 1 1 t dt L'application réciproque de ln est la fonction exponentielle 



[PDF] Bijection Définition : Fonction réciproque Résumé

1/4 Professeur : Benjeddou Saber Bac Sc expérimentales – Résumé : Fonctions réciproques Définition : "Bijection" Théorème :



[PDF] Fonction réciproque dune fonction strictement monotone sur un

Soit f : I ?? R une fonction continue et strictement monotone définie sur un intervalle I ? R 63 1 Fonctions réciproques Définition 1 : Soient E 



[PDF] Fonctions trigonométriques réciproques

Les fonctions sinus cosinus définies de r dans l'intervalle [-1 ;1] sont des applications surjectives par définition c'est à dire :



[PDF] Feuille 1 Fonctions réciproques & Dérivabilité Quelques Rappels

Exercice 4 En revenant à la définition donner le domaine de dérivabilité et calculer la dérivée des fonctions suivantes 1 La fonction x ?? xn définie sur R 

  • Quelle est la formule de la réciproque ?

    La relation réciproque d'une fonction f de X dans Y est la relation notée f-1, de Y dans X, telle que, pour tous les éléments du domaine de f, si y = f(x), alors x = f -1(y).
  • Quelle est la fonction réciproque ?

    En analyse, la fonction réciproque (ou bijection réciproque) d'une fonction bijective f est une fonction notée f-1 qui, à partir du résultat obtenu en appliquant f sur un nombre, redonne ce nombre.
  • Comment trouver la fonction réciproque d'une fonction ?

    La réciproque d'une fonction f s'obtient en intervertissant les valeurs de x et de y puis en isolant y . Elle se note f?1 . On obtient le graphique d'une réciproque en faisant subir à notre fonction une réflexion par rapport à l'axe y=x .
  • Afin de trouver la règle de la fonction réciproque de f, il suffit de poser x=f(y) et d'isoler la variable y. Déterminons si la fonction f(x)=(x?1)3+2 est injective. Si oui, trouvons la fonction réciproque de f. Pour toutes valeurs x1?x2, on a que (x1?1)3+2?(x2?1)3+2.
1

Fonctions trigonométriques réciproques

1 Définitions

Les fonctions sinus, cosinus définies de dans l'intervalle [-1 ;1] sont des applications surjectives par définition,

c'est à dire : y [-1 ;1], x tel que sin(x) = y et cos(x) = y .

La fonction tangente définie de - {x x =

2 + k , k } dans est une application surjective par définition .

A condition de restreindre judicieusement leurs ensembles de définition, on peut définir des fonctions qui sont

injectives et par conséquent bijectives. Pour la fonction sinus, on restreint son domaine de définition à l'intervalle [- 2 2 ] et on a : sin : [- 2 2 ] [-1 ;1] x sin(x) Alors cette fonction " sin " est bijective et on peut définir sa fonction réciproque appelée arc sinus ainsi : arcsin : [-1;1] [- 2 2 x arcsin(x) avec l'équivalence : y = arcsin(x) x = sin(y)

La représentation graphique

1 f d'une fonction f -1 réciproque d'une applicatio bijective est toujours symétrique de f par rapport à la bissectrice d du premier et troisième quadrant d'équation d : y = x . 1 f f 2 Pour la fonction cosinus, on restreint son domaine de définition à l'intervalle [0 ;] et on a : cos : [0 ;] [-1 ;1] x cos(x) Alors cette fonction "cos" est bijective et on peut définir sa fonction réciproque appelée arc cosinus ainsi : arccos : [-1;1] [0 ;] x arccos(x) avec l'équivalence : y = arccos(x) x = cos(y) Pour la fonction tangente, on restreint son domaine de définition à l'intervalle ]- 2 2 [ et on a : tan : ]- 2 2 x tan(x) Alors cette fonction "tan" est bijective et on peut définir sa fonction réciproque appelée arc tangente ainsi : arctan : ]- 2 2 x arctan(x) avec l'équivalence : y = arctan(x) x = tan(y)

Exemples : arcsin(1) =

2 , car sin( 2 ) = 1 arccos( 21
3 , car cos( 3 21
; arctan(-1) = - 4 , car tan(- 4 ) = -1

2 Remarques :

1) Soit f : A B une application bijective et f

-1 : B A sa réciproque avec y = f -1 (x) x = f(y) .

On a alors : f

of -1 = id B et f -1 of = id A , c'est à dire : xB , : fof -1 (x)= id B (x) = x et yA , : f -1 of(y)= id A (y) = y . Ainsi : x [-1 ;1] , sin[arcsin(x)] = x et cos[arccos(x)] = x y [- 2 2 ] , arcsin[sin(y)] = y et y [0 ;] , arccos[cos(y)] = y et x , tan[arctan(x)] = x y ]- 2 2 [ , arctan[tan(y)] = y .

2) On a aussi : x[-1 ;1] , arcsin(-x) = -arcsin(x) et x

, arctan(-x) = -arctan(x) ; les fonctions arcsin et arctan sont donc impaires.( car sin et tan sont impaires) preuve : y = arcsin(-x) -x = sin(y) x = -sin(y) x = sin(-y) -y = arcsin(x) y = -arcsin(x) y = cos(x) y = arctan(x) y = tan(x) y = arccos(x) 3

3 Dérivées

On a démontré le théorème de dérivation d'une fonction réciproque d'une application bijective :

Si f est une fonction bijective et continue sur un intervalle ouvert contenant y 0 et si f est dérivable en y 0 et si f '(y 0 ) 0 , alors la bijection réciproque f -1 est dérivable en x 0 = f(y 0 ) et on a (f -1 )'(x 0 )('f1 0 y.

En posant y = f

-1 (x) = arcsin(x) et x = f(y) = sin(y) on obtient : (f -1 )'(x) = [arcsin(x)]' = x- 1 1 * (x))cos(arcsin1 cosy1 (siny)'1 )y('f1 2 , x ]-1 ;1[ .(* cf. exercice 3a)

Exercices : démontrer que : [arccos(x)]' =

x- 1 1- 2 x ]-1 ;1[ et [arctan(x)]' = 2 x 1 1 , x . remarque : la fonction arcsin n'est pas dérivable en x = -1 et en x = 1 ; calculons f d (1) et f ' g (-1) : f d (1) =

01 x- 1 1 lim

21x
et f g (-1) =

01 x- 1 1 lim

21x
interprétation géométrique : les tangentes au graphique de la fonction arcsin en 1 x et en 1 x sont verticales : 4

4 Exercices

1) Démontrer : x [-1 ;1] , arcsin(x) + arccos(x) =

2

2) Calculer le domaine de définition des fonctions f

i définies par : a) y = f 1 (x) = arcsin

3 x21 x

b) y = f 2 (x) =

1xarctanx

2 c) y = f 3 (x) = arccos 2 x1x2

3) Démontrer :

a) x [-1 ;1] , cos[arcsin(x)] = x 1 2 et sin[arccos(x)] = x 1 2 b) x ]-1 ;1[ , tan[arcsin(x)] = x- 1 x 2 c) x [-1 ;1]-{0} , tan(arccos(x)] = x x- 1 2 d) x , sin[arctan(x)] = x 1 x 2 et cos[arctan(x)] = x 1 1 2

4) Calculer les dérivées des fonctions f

i définies par : a) y = f 1 (x) = arcsin (2x-3) b) y = f 2 (x) = arccos(x 2 c) y = f 3 (x) = arctan (3x 2 ) d) y = f 4 (x) = arctan x1x1

5) Calculer :

a) dx x11 2 b) dx xa1 22
( poser t = ax ) c) dx x 1 1 2 d) dx x 1 x 22
( poser t = arccos(x) x = cos(t) ) e) dx x 1 x 2 ( poser t = arctan(x) x = tan(t) ) f) dx arcsin(x) g) dx arccos(x) h) dx arccos(2x) i) dx arctan(x) x j) dx x- 1 2 k) dx x16 25 1 2

6) a) Calculer l'aire de la surface comprise entre le graphique de la fonctio définie par y = f(x) = arcsin(x),

l'axe des abscisses et les verticales x = 0 et x = 1 . b) Même question pour la fonction g définie par y = g(x) = arccos(x) .quotesdbs_dbs16.pdfusesText_22
[PDF] séquence pierre et le loup cycle 2

[PDF] trouver la fonction réciproque d'un polynome

[PDF] fonction réciproque exercices corrigés

[PDF] séquence pierre et le loup cycle 3

[PDF] fonction réciproque définition

[PDF] réciproque d'une fonction racine carré

[PDF] pierre et le loup cm2

[PDF] calcul fonction reciproque en ligne

[PDF] fonction réciproque dérivée

[PDF] activité réciproque du théorème de pythagore

[PDF] musique de film youtube

[PDF] pythagore 3eme exercices

[PDF] activité 2nd degré

[PDF] recherche musique de film

[PDF] musique de film compositeur