[PDF] Fonction Trigo





Previous PDF Next PDF



MATHEMATIQUES 1/2

1+cos(2x). 2. Addition : sin (a + b) = sin a . cos b + sin b . cos a sin (a - b) = sin a . cos b - sin b . cos a cos (a + b) = cos a . cos b – sin a .sin b.



EXERCICES DAPPLICATION SUR LE COSINUS

Calculer la longueur JV. Page 2. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr.



COSINUS

? Le cosinus ne s'applique jamais sur l'angle droit !!! Page 2. 2. Yvan Monka – Académie de Strasbourg – www.maths-et 



FONCTIONS COSINUS ET SINUS

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. FONCTIONS COSINUS ET Le cosinus du nombre réel x est l'abscisse de M et on note cos x.



Fonction Trigo

= x rad . Le cosinus de x noté cos x



La chaînette 1 Le cosinus hyperbolique

Place aux maths : nous allons expliquer comment calculer l'équation d'une Le cosinus hyperbolique et le sinus hyperbolique sont la partie paire et ...



LA LECOINTE - Mémoire sur quelques séries de sinus et cosinus

sinus et cosinus. Nouvelles annales de mathématiques 1re série tome 3. (1844)





Outils Mathématiques et utilisation de Matlab

Ensuite Y = cos(X*pi) défini le vecteur Y suivant la fonction f(x) = cos ?x. La commande figure(1) crée une nouvelle fenêtre sous Matlab nommée Figure 1. On 



Partie 1 : Fonctions cosinus et sinus

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. TRIGONOMÉTRIE – Chapitre 3/3. Partie 1 : Fonctions cosinus et sinus.

Term S Fonctions trigonométriques I ] Les fonctions sinus et cosinus ( rappels de seconde ) 1) Définitions et valeurs remarquables Définitions : Soit M un point du cercle trigonométrique tel que

IOM

Valeurs remarquables x 0 π6 π4 π3 π2 2π3 3π4 5π6 π cos x 1 32 22 12 0 - 12 - 22 - 32 -1 sin x 0 12 22 32 1 32 22 12 0 tan x 0 1

3 1 3

N'existe pas - 3

-1 -1 3

0 2) La fonction cosinus cos :

[ -1 ; 1 ] x cos x Ensemble de définition =

. (rappel de 1er : cos ' x = - sin x ) Quel que soit le réel x, cos(x + 2π) = cos x ; On dit que la fonction cosinus est périodique de période 2π. Quel que soit le réel x, cos(-x) = cos x La fonction cosinus est paire . On peut donc étudier la fonction cosinus sur [ 0 ; π

] , puis faire la symétrie par rapport à l'axe des abscisses (parité) , puis des translations (période). Tableau des variations : x -π - π2 0 π2 π cos 1 0 0 -1 -1

Courbe représentative de la fonction cosinus : 3) La fonction sinus sin : [ -1 ; 1 ] x sin x Ensemble de définition =

. (rappel de 1er : sin ' x = cos x ) Quel que soit le réel x, sin(x + 2π) = sin x ; On dit que la fonctions sinus est périodique de période 2π. Quel que soit le réel x, sin(-x) = -sin x La fonction sinus est impaire . On peut donc étudier la fonction sinus sur [ 0 ; π ] , puis faire la symétrie par rapport à l'origine du repère (parité) , puis des translations (période). Tableau des variations : x -π - π2 0 π2 π sin 1 0 0 0 -1 Courbe représentative de la fonction sinus : II] La fonction tangente Définition : tan x =

sinx cosx

, donc tan x existe si et seulement si cos x ≠ 0 c'est-à-dire si x ≠ π2 + k π avec k ∈

. On note D l'ensemble de définition de la fonction tangente : D = - {π2 + k π avec k∈

} Propriétés : La fonction tangente est π périodique et impaire. Conséquence : on réduit l'intervalle d'étude à ] - π2 ; + π2 [ O

1 -1

π2π-π-2π

3π 2 2 2 3π 2

3π-3π

5π 2 5π 2 O 1 -1 3π 2 2 2 3π 2 3π 5π 2 5π 2 -3π-2π-π2π Propriétés: la fonction tangente est dérivable en tout x de D et tan ' x = 1 + tan² x = 1 cos 2 x

>0 donc la fonction tangente est strictement croissante sur D. III ] Equations trigonométriques 1) Résolution des équations cos x = a et sin x = a ( x ∈

) • Si a ∉ [ -1 ; +1 ] alors ces équations n'ont pas de solutions. • Si a ∈ [ -1 ; +1 ] alors ces équations ont une infinité de solutions dans

: Pour sin x = a , on cherche une solution particulière α sur [ 0 ; π ] telle que sin α = a = sin x , on obtient toutes les solutions sous la forme : x=!+2k" x="#!+2k" avec k ∈ . Pour cos x = a , on cherche une solution particulière α sur [ 0 ; π ] telle que cos α = a = cos x , on obtient toutes les solutions sous la forme : x=!+2k" x=#!+2k" avec k ∈ . Exercice : Résoudre les équations suivantes : cos x = - 0,5 dans ; sin x = 3 2

sur [ 0 ; 2 π] ; 2 sin(3x) = 1 pour x ∈ [0 ; 6 π ]. 2) Résolution de l'équation tan x = a , x ∈ D Pour a réel quelconque, on cherche une solution particulière α

sur [ - 2 ; 2 ] telle que tan α = a = tan x, on obtient toutes les solutions sous la forme x = α + k π avec k ∈quotesdbs_dbs47.pdfusesText_47
[PDF] Mathématiques: nombres en écriture fractionnaire 4ème

[PDF] Mathématiques: Puissances

[PDF] Mathématiques: racines carées

[PDF] Mathematiques: Raisonnment A Partir D'un Algorithme

[PDF] mathématiques: résoudre une équation

[PDF] Mathématiques: Tableau de variation

[PDF] Mathématiques: thales

[PDF] Mathématiques: Thorème de comparaison

[PDF] Mathematiques:calculer a² et b²

[PDF] Mathématiques:devoir maison

[PDF] Mathématiques:devoir maison numéro 5

[PDF] Mathématiques:Devoir maison n°6

[PDF] mathématiques:Problème de vecteur

[PDF] Mathématiques:résoudre une équation

[PDF] Mathématiques; exercice; Ecrire une expression mathematique traduisant :