[PDF] La démonstration par récurrence





Previous PDF Next PDF



Chapitre 3: La démonstration par récurrence

Chapitre 3: La démonstration par récurrence. 3.1 Un exemple pour comprendre le principe. Introduction : Pour découvrir une formule donnant la somme des n 



LES SUITES (Partie 1)

Remarque : Une démonstration par récurrence sur les entiers est mise en œuvre lorsque toute démonstration "classique" est 3) Inégalité de Bernoulli.



Exemples de raisonnement par récurrence

La formule est vraie au rang n. On peut alors calculer le nombre de déplacements nécessaires pour un plus grand nombre de disques par exemple pour 10 disques 



Les suites - Partie I : Raisonnement par récurrence

Dans ce cas on dispose d'une formule permettant de calculer directement Un en fonction de . C'est à dire qu'il existe une fonction définie sur telle que



Raisonnement par récurrence : Exercices Corrigés en vidéo avec le

Récurrence - suite bornée - inégalité. Soit la suite (un) définie par u0 = 0 et pour tout entier naturel n un+1 = un + 3. 4un + 4. On consid`ere la fonction f 



La démonstration par récurrence

La démonstration par récurrence sert lorsqu'on veut démontrer qu'une Exemple : Prenons un exemple simple pour illustrer le raisonnement par récurrence.



Cours complet

Montrons que pour tout entier naturel n (1+a)n ? 1+na. On nomme cette inégalité



Calcul Algébrique

Donc : Pnk = Pn



Prouver une inégalité

2 Passer à l?inverse dans des inégalités de nombres de même signe : 2 Une démonstration par récurrence pour comparer deux expressions An et Bn pour.



Cours complet

Montrons que pour tout entier naturel n (1+a)n ? 1+na. On nomme cette inégalité

Année 2007-20081èreSSVT

La démonstration par récurrence

Dans toute la suitenappartientàN.

La démonstrationparrécurrencesertlorsqu"onveut démontrerqu"une propriété,dépendantde n, est vraie pour toutes les valeurs den. On appelle dans ce casPnla propriétéen question. On est ainsi amené à montrer que la propriétéPnest vraiepour toutesles valeursden. P

1?P0?P2?P3?P4?······

Exemple :Prenons un exemple simple pour illustrer le raisonnement par récurrence. On veut montrer par récurrence la propriété : ??pour tout entiernon a : 0+1+2+···+n=n(n+1) 2.??

Pour n"importe quel entiernon appellePnla propriété (à démontrer):??1+2+···+n=n(n+1)

2??. On peut à présent démontrer par récurrence que :??0+1+2+···+n=n(n+1)

2pour tout entiern??.

La démonstration par récurrencese fait en trois étapes : •Initialisation: on vérifie que la propriété est vraie pour la première valeur den(souvent n=0).

On vérifie donc queP0est vraie.

P 1?

P0vraieP2?P3?P4?······

Exemple :

•Initialisation: icin=0 doncn(n+1)2=0×(0+1)2=0 et ainsi la propriétéP0est vraie. •Hérédité:

on démontre la propriété suivante :??si la propriété est vraie pour un certain rangk(n"importe lequel)

alors la propriété est vraie pour le rang juste après c"est-à-dire pour le rangk+1??.

PkvraiePk+1?transmission

La propriété se transmet de la valeur de l"indicekà la valeur de l"indicek+1.

On dit que la propriété est

héréditaire.

Page 1/2

Année 2007-20081èreSSVT

Exemple :•Transmission:

Sila propriétéPkest vraie(pour un certain k)montrons qu"alorsPk+1est vraie aussi . On sait (par hypothèse de récurrence) : 0+1+2+···+k=k(k+1) 2. On veut démontrer que : 0+1+2+···+(k+1)=(k+1)?(k+1)+1?

2=(k+1)(k+2)2.

On a 0+1+2+···+(k+1)=0+1+2+···+k+(k+1) . Par ailleurs d"après l"hypothèse de récurrence 0+1+2+···+k=k(k+1)

2donc 0+1+2+···+(k+1)=k(k+1)2+(k+1) .

On a ensuite

k(k+1)

2+(k+1)=k(k+1)2+2(k+1)2=(k+1)(k+2)2et donc il suit que

0+1+2+···+(k+1)=(k+1)(k+2)

2.

La propriétéPk+1est ainsi vraie.

On a donc bien montré que si

Pkest vraie alorsPk+1l"est aussi.

•Conclusion:

les deux étapes précédentes permettent de conclure que la propriété est vraie pour tous les entiersn.

En effet la propriétéest vraie au rang 0 donc avec l"étape d"hérédité elle devient vraie au rang 1. On peut

alors réappliquer l"étape d"hérédité au rang 1 et la propriété devient vraie au rang 2.

En réappliquant l"étape d"hérédité de proche de proche, il suit que la propriété est vraie pour tous les

entiersn.

P1vraieP0vraieP2?transmission

P

3?P4?······

P1vraieP0vraieP2vraieP3vraie

P4?transmission

Exemple :

•Conclusion: On a ainsi pour tout entiernl"égalité : 0+1+2+···+n=n(n+1)2.

Page 2/2

quotesdbs_dbs50.pdfusesText_50
[PDF] démonstration par récurrence exercices et problèmes

[PDF] démonstration par récurrence nombres complexes

[PDF] démonstration par récurrence terminale s

[PDF] démonstration somme suite géométrique

[PDF] démonstration théorème d'euler graphe

[PDF] demonstration z^n barre

[PDF] demontage banquette arriere peugeot 2008

[PDF] demontage thermomix 3000

[PDF] demontage thermomix tm21

[PDF] démontrer droite parallèle plan

[PDF] démontrer par récurrence que pour tout entier naturel n

[PDF] démontrer qu'un point est le milieu d'un segment

[PDF] démontrer qu'une fonction est croissante

[PDF] démontrer qu'une fonction est décroissante sur un intervalle

[PDF] démontrer qu'une suite est arithmético-géométrique