[PDF] [PDF] Dérivées des fonctions de plusieurs variables (suite) 1 La





Previous PDF Next PDF



[PDF] TD3 – Différentiabilité des fonctions de plusieurs variables Exercice

TD3 – Différentiabilité des fonctions de plusieurs variables Exercice 1 Montrer d'après la definition que la fonction : f(x y) = x2 + y2



[PDF] Cours FPV - Semaine 2 : Différentiabilité de Fonctions de Plusieurs

Dans ce chapitre nous allons étudier la différentiabilité des fonctions de plusieurs variables dans le cas général; cad dans le cas de fonctions `a valeurs 



[PDF] Fonctions de plusieurs variables

1 nov 2004 · 1 2 Différentiabilité d'une fonction de deux variables Définition 1 2 Soit f une fonction de deux variables définie au voisinage de (0 



[PDF] Différentiabilité ; Fonctions de plusieurs variables réelles

Fonction f : U ? Rn ?? Rp (U est ouvert de Rn) Définition 2 1 f est différentiable en a (on note f ? Diff(a)) si ?L forme linéaire ?h 



[PDF] Composition de fonctions différentiables - Application aux EDP

En dimension 1 on sait que si f et g sont deux fonctions dérivables de R dans R comme pour la dérivée d'une composition de fonction d'une variable 



[PDF] Chapitre 1 - Fonctions de plusieurs variables Limites dans R

tement local d'une fonction étude des extrema ) d'intégration et enfin le lien entre les deux 1 1 Fonctions de plusieurs variables



[PDF] Cours dAnalyse 3 Fonctions de plusieurs variables

Le but de ce cours est de généraliser la notion de dérivée d'une fonction d'une variable réelle à valeurs réelles à partir de la théorie du calcul 



[PDF] Dérivées des fonctions de plusieurs variables (suite) 1 La

Si f est différentiable en x alors f est continue en x Remarque L'existence des dérivées partielles de f n'implique pas la différentiabilité Mais :



[PDF] fonctions continûment différentiables de deux variables - Free

a = (x0 y0) désigne un point de U a) Définitions • On dit que f est dérivable par rapport à la première variable en a si la fonction partielle f(  

L2 MIEE 2012-2013V ARUniv ersitéde Rennes 1

Dérivées des fonctions de plusieurs variables (suite)

1 La différentielle d"une fonction à valeurs réelles

Cas des fonctions d"une variable

(i)fest dérivable enX0silimh!0f(X0+h)f(X0)h existe.

Sa valeur`est notéef0(X0).

(ii) On p eut,de manière équiv alente,écrire limh!0f(X0+h)f(X0)`hh = 0. On remarque queh!L(h) =`hest une application linéaire deRdansR, que l"on appelledifférentielledefenX0et que l"on notedf(X0). (iii) Si fest dérivable enX0, alors pourhpetit :f(X0+h)est "voisin" def(X0)+f0(X0)h. Donch!f(X0) +f0(X0)hest une application affine qui "approche très bien " f(X0+h).

Définition

1.1. fest différentiable enxs"il existe une application linéaireL:Rn!R

telle que : f(x+h) =f(x) +L(h) +khk(h); aveclimh!0(h) = 0. L"applicationLestla différentielle defenxet se notedf(x) ouf0(x).

Remarque

Cette définition signifie que l"application affinef(x)+df(x)hest tangente à l"application h7!f(x+h)en 0. Lorsque qu"on remplacef(x+h)parf(x) +df(x)het quehest petit, alors on fait une erreur négligeable par rapport àh.

Cela revient à dire

lim khk!0f(x+h)f(x)L(h)khk= 0 La différentielle, lorsqu"elle existe, est unique.

Proposition

1.2. Sifest différentiable enx, alors ses dérivées partielles existent et on

a : df(x)h=@ f@ x

1(x)h1+:::+@ f@ x

n(x)hn =rfh

Remarque

La matrice de l"application linéairedf(x)dans la base canonique est le gradientrf(x). 1

L2 MIEE 2012-2013V ARUniv ersitéde Rennes 1

Proposition

1.3. Sifest différentiable enxalorsfest continue enx.

Remarque

L"existence des dérivées partielles defn"implique pas la différentiabilité.

Mais :

Théorème

1.4. Sifadmet des dérivées partielles et si elles sont continues alorsfest

différentiable.

On dit quefest de classeC1.

1.1 Règle de différentiation

Proposition

1.5. Sifetgsont différentiables on a :

(i)d(f+g)(x) =df(x) +dg(x) (ii)d(f)(x) =df(x) (iii)d(fg)(x) =f(x)dg(x) +g(x)df(x) (iv)dfg (x) =g(x)df(x)f(x)dg(x)g

2(x)(à condition queg(x)6= 0)

1.2 Remarques

Sif:U!RoùUest un ouvert deRn, alors :

(i) Si festC1surUalorsfest différentiable surUet les dérivées@ f@ x iexistent surU.

Les réciproques ne sont pas vraies!!

(ii) Si fest différentiable enx02Ualors l"application affineA(h) =f(x0) +df(x0)h a pour graphe l"espace tangent au graphe defenx0.

1.3 Dérivées partielles successives

Les dérivées partielles

@f@x i(x1;:::;xn)sont des fonctions dex1;:::;xn, et il arrive souvent qu"elles sont eux-même dérivables.

Définition

1.6. On écrit, lorsqu"elle existe,@2f@x

i@xj=@@x i @f@x j et on dit qu"il s"agit d"unedérivée partielle secondedef.

Exemple

f:R2!R;(x;y)7!x3y4. Alors@2f@x@y (x;y) = 12x2y3=@2f@y@x (x;y). 2

L2 MIEE 2012-2013V ARUniv ersitéde Rennes 1

Théorème

1.7. (Schwarz)

Si les déirvées partielles

@f@x i;@2f@x i@xjexistent et sont continues dans une boule autour de(a1:::an)alors : 2f@x i@xj(a) =@2f@x j@xi(a)

2 La différentielle d"une fonction à valeurs vectorielles

Définition

2.1. FdeRndansRmestdifférentiableenx2Rns"il existe uneappli-

cation linéaireLdeRndansRmtelle que : lim khk!0F(x+h)F(x)Lhkhk= 0:

Lest ladifférentielledeFenxet se note :dF(x).

Théorème

2.2. Fest différentiable enxsi et seulement si ses composants sont différen-

tiables et on a : dF(x)h= (rf1(x)h; ::: ;rfm(x)h):

Définition

2.3. La matrice

2 6 4@f 1@x

1(x)@f1@x

n(x) @f m@x

1(x)@fm@x

n(x)3 7 5 est la matrice dedF(x)et est appeléematrice jacobiennedeFenxet se note :J(F)(x).

Théorème

2.4. SiFa des composantes de classeC1alors elles sont différentiables etF

est également différentiable.

Exercice

(i) T rouverla matrice jaco biennede Fen(1;1)de :F(x; y) = (x2+y2; exy). (ii) T rouverla différen tiellede F(x; y ; z) = (x; y ; z). (iii) T rouverla diff érentiellede F(r; ) = (rcos; rsin).

2.1 Propriétés de la différentielle

Proposition

2.5. SiFdeRndansRmest linéaire, alorsdF(x) =F.

Proposition

2.6. SiFest différentiable enxalorsFest continue enx.

3

L2 MIEE 2012-2013V ARUniv ersitéde Rennes 1

2.2 Différentielles des fonctions composées

SiFest une fonction deRndansRm, siGest une fonction deRmdansRq, alorsGF est une fonction deRndansRq.

Théorème

2.7. SiFest différentiable enx, et siGest différentiable enF(x), alors

GFest différentiable enxet on a :

d(GF)(x) =dG(F(x))dF(x):

Exercice

DériverGFlorsque

F(x; y) = (x2+y2; exy)

G(u; v) = (xy ;sinx; x2y)

2.3 Sur la règle de dérivation en chaîne

Le résultat théorique

Soientf:Rn!Retg:Rp!Rndeux fonctions différentiables. Écrivonsh=f g:D"après la règle de dérivation des fonctions composées nous avons (comme pour les fonctions deRdansR) : h

0(x) = (fg)0(x) =f0(g(x)):g0(x):

La fonctionfgest une fonction deRpdansR. Sa dérivée est donc un vecteur ligne àp colonnes, la transposée de son gradient : h

0(x) =

@h@x 1@h@x

2:::@h@x

p La fonctiongest une fonction deRpdansRn. Sa dérivée est la matricenpcomposée des vecteurs transposés des gradients des coordonnées deg. Sig(x) = (g1(x);g2(x);:::;g2(x)) (on devrait écrire ce vecteur en colonne si on voulait se conformer en toute rigueur aux choix du cours) la dérivée degs"écrit : g

0(x) =0

B

BBB@@g

1@x 1@g 1@x

2@g1@x

p@g2@x 1@g 2@x

2@g2@x

p............ @g n@x 1@g n@x

2@gn@x

p1 C CCCA: Pour simplifier la présentation appelonsg= (g1;g2;:::;gn)un point deRn. C"est un abus de notation,gne désigne pas ici la fonctiongmais un vecteur, un point dansRn. La dérivée defen un pointgest donnée par la transposée de son gradient : f

0(g) =@f@g

1@f@g

2:::@f@g

n 4

L2 MIEE 2012-2013V ARUniv ersitéde Rennes 1

L"égalité matricielleh0(x) = (fg)0(x) =f0(g(x)):g0(x)signifie donc : @h@x 1@h@x

2:::@h@x

p =@f@g 1@f@g

2:::@f@g

n0 B

BBB@@g

1@x 1@g 1@x

2@g1@x

p@g2@x 1@g 2@x

2@g2@x

p............ @g n@x 1@g n@x

2@gn@x

p1 C CCCA:

Autrement dit pour touti= 1;:::;pon a

@h@x i=nX k=1@f@g k@g k@x i: Attention! Quandgkapparaît au dénominateur cela signifie seulement que l"on prend la

dérivée defpar rapport à sakième variable. Quand il apparaît au numérateurgkdésigne

lakième coordonnée deg: c"est alors une fonction.

Un exemple

Prenonsf:R3!Retg:R2!R3deux fonctions différentiables définies par f(x;y;z) = 2xy3(x+z); g(x;y) = (x+y4;y3x2;2x23y): On demande de calculer les dérivées partielles de la fonction de deux variablesh=fg.

Pour se ramener au théorème général et ne pas s"embrouiller, il est préférable de changer

les noms des variables dans l"expression def: f(g1;g2;g3) = 2g1g23(g1+g3): La formule de dérivation en chaîne donne alors @h@x =@f@g

1@(x+y4)@x

+@f@g

2@(y3x2)@x

+@f@g

3@(2x23y)@x

@h@y =@f@g

1@(x+y4)@y

+@f@g

2@(y3x2)@y

+@f@g

3@(2x23y)@y

Pour @h@x , on obtient : @h@x = (2g23):1 + 2g1:(6x) + (3):4x Exprimée en fonction dexetycette dérivée s"écrit : @h@x = 2y6x2312x(x+y4)12x=12xy418x2+ 2y12x3: Je vous laisse le calcul de la deuxième dérivée partielle dehen exercice. Remarque. On peut aussi écrire les choses sous la forme : @h@x =@f@x @(x+y4)@x +@f@y @(y3x2)@x +@f@z @(2x23y)@x

mais c"est un peu risqué. Il ne faut surtout pas oublier de prendre les valeurs des dérivées

partielles defau point(x+y4;y3x2;2x23y). 5quotesdbs_dbs50.pdfusesText_50
[PDF] differents modeles de familles

[PDF] différents murs d'une maison

[PDF] différents murs d'une maison pdf

[PDF] differents type de leadership

[PDF] différents types d'évaluation en eps

[PDF] différents types d'hépatites pdf

[PDF] differents types de banques

[PDF] différents types de lecteurs

[PDF] différents types de management cours

[PDF] differents types de recherche scientifique

[PDF] difficulté ? écrire adulte

[PDF] difficulté ? écrire correctement

[PDF] difficulté ? écrire maladie

[PDF] difficulté ? se relever de la position assise

[PDF] difficulté d'apprentissage au primaire