[PDF] PRODUIT SCALAIRE DANS LESPACE Donc est orthogonal à deux vecteurs





Previous PDF Next PDF



Chapitre 2.3 – Le produit vectoriel

Le produit vectoriel est une autre opération algébrique entre deux vecteurs dont le résultat est un vecteur. On utilise l'opérateur « × » pour désigner le 



PRODUIT SCALAIRE

La norme du vecteur u ! notée u !



Opérations sur les vecteurs

Le produit scalaire de deux vecteurs correspond à la somme des produits de leurs composantes. Si =(a b) et = (c





PRODUIT SCALAIRE DANS LESPACE

Donc est orthogonal à deux vecteurs non colinéaires de (ABG) il est donc normal à (ABG). Méthode : Déterminer un vecteur normal à un plan. Vidéo https://youtu.



Vecteurs : Produit scalaire et produit vectoriel I Produit scalaire (de

des deux vecteurs par le cosinus de leur angle . Le produit scalaire est donc : positif pour ? aigu négatif pour ? obtus. • Forme géométrique.



Produit scalaire de 2 vecteurs

Les deux vecteurs ont la même origine A qui est alors le sommet de l'angle géométrique . ? Dans le cas où les deux vecteurs n'ont pas la même origine 



le-produit-scalaire-de-deux-vecteurs-colineaires.pdf

La formule du produit scalaire avec le cosinus va nous permettre d'obtenir un résultat très intéressant pour les vecteurs colinéaires car deux vecteurs 



Produit scalaire dans lespace - Lycée Pierre Gilles de Gennes

Ainsi tout plan de l'espace admet un vecteur normal. • Deux vecteurs normaux d'un plan de l'espace sont colinéaires. 2. Droites perpendiculaires (ou 



Le produit scalaire

2 y. 2 pour un vecteur u xy . 3. Formule du cosinus. Soient u et v deux vecteurs non nuls. On a u 



[PDF] Vecteurs : Produit scalaire et produit vectoriel

Le produit scalaire de deux vecteurs est égal au produit du module de l'un par la mesure algébrique de la projection de l'autre sur lui • Forme analytique



[PDF] PRODUIT SCALAIRE - maths et tiques

2) Définition du produit scalaire Définition : Soit u ! et v ! deux vecteurs du plan On appelle produit scalaire de u ! par v ! noté u



[PDF] Chapitre I : Rappel sur le calcul vectoriel

I 3 5 Double produit vectoriel Un vecteur est une entité mathématique définie par une Le produit scalaire de deux vecteurs non nuls représentés



[PDF] Le produit scalaire et ses applications - Lycée dAdultes

17 mai 2011 · Définition 2 : Dans un repère orthonormal (O ? l) le produit scalaire de deux vecteurs u et v de coordonnées respectives (x; 



[PDF] Le produit scalaire de deux vecteurs CoursMathsAixfr

Nous aurons dans ce chapitre trois moyens pratiques pour calculer le produit scalaire de deux vecteurs une formule utilisant le cosinus de l'angle formé 



[PDF] Produit scalaire produit vectoriel produit mixte

Produit scalaire dans l'espace vectoriel euclidien VR à 3 dimensions entre deux vecteurs quelconques x ? VR 3 et y ? VR 3 il est bien connu



[PDF] Produit scalaire : Résumé de cours et méthodes 1 Introduction 2

Produit scalaire : Résumé de cours et méthodes Le plan est muni d'un repère orthonormal 1 Introduction DÉFINITION le produit scalaire de deux vecteurs 



[PDF] Produit scalaire de deux vecteurs

Deux vecteurs ?u et ?v sont orthogonaux si et seulement si leur produit scalaire est nul Remarque : Le vecteur nul ?0 est orthogonal à tout vecteur III-2- 



[PDF] Leçon n°17 : Produit scalaire

5 mar 2018 · 1) Deux droites sont orthogonales si et seulement si leurs vecteurs directeurs sont orthogonaux 2) Deux droites sont parallèles si et seulement 



[PDF] Chapitre 22 – Le produit scalaire - Physique

Le produit scalaire est une autre opération algébrique entre deux vecteurs dont le résultat est un scalaire On utilise l'opérateur « ? » pour désigner le 

:
1

PRODUIT SCALAIRE

DANS L'ESPACE

I. Produit scalaire de deux vecteurs

1) Définition

Soit et deux vecteurs de l'espace. A, B et C trois points tels que et Il existe un plan P contenant les points A, B et C.

Définition :

On appelle produit scalaire de l'espace de et le produit égal au produit scalaire dans le plan P.

On a ainsi :

- si ou est un vecteur nul,

Exemple :

Vidéo https://youtu.be/vp3ICG3rRQk

ABCDEFGH est un cube d'arête a.

uvuAB=vAC=uv.uv.ABAC.0uv=uv .cos ;uvuv uv=´´ 2 uvAB DG ABAF ABAB a H 2

2) Propriétés

Les propriétés dans le plan sont conservées dans l'espace. Propriétés : Soit , et trois vecteurs de l'espace. - et sont orthogonaux.

Démonstration :

Il existe un plan P tel que les vecteurs et admettent des représentants dans P. Dans le plan, les règles de géométrie plane sur les produits scalaires s'appliquent.

3) Expression analytique du produit scalaire

Propriété : Soit et deux vecteurs de l'espace muni d'un repère orthonormé . Alors .

Et en particulier : .

Démonstration :

En effet, on a par exemple dans le plan définit par le couple : , et .

On a en particulier : .

Exemple :

Vidéo https://youtu.be/N1IA15sKH-E

On considère le repère de l'espace .

uvw 2 .uuu= ..uvvu = ...uvwu vuw +=+ ...kuvu kvk uv== kÎ.0uv=Ûuvuv x uy z x vy z ,,,Oijk .'''uvx xyy zz=++ 222
.uuuxyz==++ uvx iyj zkxiyjz k xxiixy ij xzi kyxjiy yjj yzj kzxkizyk jzzk k xxyyzz ;ij 2 .1iii== 2 .1jjj== ..0ijji == 2 222
.uuu xxy yzz xyz==++=++ ;,,CCBCDCG 3

Alors : et soit .

Alors .

Les vecteurs et ne sont pas orthogonaux.

II. Vecteur normal à un plan

1) Définition et propriétés

Définition : Un vecteur non nul de l'espace est normal à un plan P lorsqu'il est orthogonal à tout vecteur admettant un représentant dans P. Théorème : Un vecteur non nul de l'espace est normal à un plan P s'il est orthogonal à deux vecteurs non colinéaires de P.

Démonstration :

Elle est incluse dans la démonstration du corollaire qui suit. Au XIXe siècle, le vecteur normal , appelé produit vectoriel, est noté ⋀. Le produit vectoriel a été inventé par un mathématicien allemand, Hermann

Günther Grassmann (1809 ; 1877).

Corollaire : Une droite est orthogonale à toute droite d'un plan si et seulement si elle est orthogonale à deux droites sécantes de ce plan.

Démonstration (exigible BAC) :

- Si une droite est orthogonale à toute droite d'un plan P alors elle est en particulier orthogonale à deux droites sécantes de P. - Démontrons la réciproque : 1 1 1 CE 10 01 0,50 DI 1 1 0,5 DI .111110,50,5CEDI =´+´-+´= CE DI nnnuv 4 Soit une droite de vecteur directeur orthogonale à deux droites et de P sécantes et de vecteurs directeurs respectifs et . Alors et sont non colinéaires et orthogonaux au vecteur . Soit une droite quelconque () de P de vecteur directeur .

Démontrons que () est orthogonale à .

peut se décomposer en fonction de et qui constituent une base de P (car non colinéaires).

Il existe donc deux réels x et y tels que .

Donc , car est orthogonal avec et .

Donc est orthogonal au vecteur .

Et donc est orthogonale à ().

Méthode : Déterminer si un vecteur est normal à un plan

Vidéo https://youtu.be/aAnz_cP72Q4

ABCDEFGH est un cube.

Démontrer que le vecteur est normal au plan

(ABG).

On considère le repère .

Dans ce repère : ,,,,.

On a ainsi :

, et , donc : Donc est orthogonal à deux vecteurs non colinéaires de (ABG), il est donc normal à (ABG). Méthode : Déterminer un vecteur normal à un plan

Vidéo https://youtu.be/IDBEI6thBPU

Dans un repère orthonormé, soit et .

Déterminer un vecteur normal au plan (ABC).

d n 1 d 2 d uvuvn D w D d wuv wxuyv=+...0wnxu nyvn=+= nuvnw d D CF ;,,BBABC BF 1 0 0 A 0 0 0 B 0 1 0 C 0 0 1 F 0 1 1 G 0 1 1 CF 0 1 1 BG 1 0 0 AB .0011110 .0(1)10100 CFBG CFAB CF 11 2,3 21
AB 2 0 2 C 5

On a : et .

Soit un vecteur orthogonal au plan (ABC). Il est tel que : soit

Prenons par exemple, alors et .

Le vecteur est donc normal au plan (ABC).

2) Equation cartésienne d'un plan

Théorème : L'espace est muni d'un repère orthonormé . Un plan P de vecteur normal non nul admet une équation cartésienne de la forme , avec ℝ. Réciproquement, si a, b et c sont non tous nuls, l'ensemble des points tels que , avec ℝ, est un plan.

Démonstration (exigible BAC) :

- Soit un point de P. 2 1 3 AB 1 2 0 AC a nb c .0 .0 nAB nAC 230
20 abc ab 2230
2 330
2 2 bbc ab bc ab cb ab b=1 1c= a=2 2 1 1 n ;,,Oijk a nb c ax+by+cz+d=0 dÎ x My z ax+by+cz+d=0 dÎ A A A x Ay z 6 et sont orthogonaux avec . - Réciproquement, supposons par exemple que (a, b et c sont non tous nuls). On note E l'ensemble des points vérifiant l'équation

Alors le point vérifie l'équation .

Et donc E.

Soit un vecteur . Pour tout point , on a :

E est donc l'ensemble des points tels que .

Donc l'ensemble E est le plan passant par A et de vecteur normal .

Exemple :

Le plan d'équation cartésienne a pour vecteur normal . Méthode : Déterminer une équation cartésienne de plan

Vidéo https://youtu.be/s4xqI6IPQBY

Dans un repère orthonormé, déterminer une équation cartésienne du plan P passant par le point et de vecteur normal . x MyP z AM n.0AMnÛ= 0 0 AAA AAA axxb yyc zz axbyc zaxby cz

Ûax+by+cz+d=0

d=-ax A -by A -cz A a¹0 x My z ax+by+cz+d=0 ;0;0 d A a ax+by+cz+d=0 AÎ a nb c x My z .000 d

AMna xby cz axbyc zd

a x My zquotesdbs_dbs6.pdfusesText_12
[PDF] produit vectoriel exercice

[PDF] projection d'un vecteur sur un autre

[PDF] forme trigonométrique d'un nombre complexe applications capes

[PDF] l'influence sociale en psychologie

[PDF] non conformité définition iso 9001

[PDF] qu'est ce que la psychologie sociale

[PDF] psychologie sociale cours licence 1

[PDF] cours d introduction psychologie sociale

[PDF] psychologie sociale cours et exercices pdf

[PDF] norme apa automatique

[PDF] normes apa statistiques

[PDF] apa 6ème édition

[PDF] normes apa psychologie 2016

[PDF] comment trouver l abscisse a l origine

[PDF] equation de droites perpendiculaires