[PDF] Séries Cette série est-elle





Previous PDF Next PDF



Séries numériques

Montrer que la suite de terme général converge et calculer sa somme. Allez à : Correction exercice 15. Exercice 16. Etudier la convergence des séries de 



Séries

Cette série est-elle convergente ? Si c'est possible calculer la somme S et les restes Rn. 2. Mêmes questions avec ?k?0(?1) 



SERIES NUMERIQUES

Exercice 2. Calculer le nombre 0297297 …





Sommaire 1. Convergence des Séries Numériques

ou complexes et éventuellement



Séries numériques Somme dune série

Calculer alors sa somme. Convergence ssi a = ?2 b =1; S = ?1. Exercice 3. Justifier l'égalité :.



Les séries de Fourier

d'une fonction périodique pour calculer la somme d'une série numérique. l'on a une décomposition de s(t) en somme de fonctions trigonométriques :.



Chapitre 3 - Séries de Fonctions

spécifiques et l'on peut résumer l'étude d'une série numérique par Autrement dit



Séries numériques

29?/04?/2014 Le fait de calculer la somme d'une série à partir de n = 0 est purement conventionnel. On peut toujours effectuer un changement d'indice ...



L2 - Math4 Exercices corrigés sur les séries numériques

Montrer par comparaison avec une intégrale



Séries

connaissant la nature de la série de terme général un puis en calculer la somme en cas de convergence. Correction ?. [005698]. Exercice 12 ****.



[PDF] [PDF] Séries - Exo7 - Cours de mathématiques

Le fait de calculer la somme d'une série à partir de k = 0 est purement conventionnel On peut toujours effectuer un changement d'indice pour se ramener à 



[PDF] Séries numériques - Licence de mathématiques Lyon 1

Montrer que la suite de terme général converge et calculer sa somme Allez à : Correction exercice 15 Exercice 16 Etudier la convergence des séries de 



[PDF] Séries numériques

29 avr 2014 · On dit que la série ? un converge vers s si la suite des sommes partielles converge vers s qui est appelée somme de la série +? ? n=0 un = 



[PDF] Calcul numérique de sommes de séries

Quand la série converge suffisament rapidement il suffit de calculer Sn = ? de (uk)k?N telle que ?uk converge ait même somme (éventuellement à une



[PDF] L2 - Math4 Exercices corrigés sur les séries numériques

Exercices corrigés sur les séries numériques Exercice 3 Calculer la somme des séries Exercice 6 (1) Montrer que la série de terme général un = n



[PDF] Séries numériques Somme dune série

Séries numériques Somme d'une série Exercice 1 Calculer les sommes partielles des séries ? un En déduire leur nature et leur somme si elle existe :



[PDF] SERIES NUMERIQUES

Soient ? un et ? vn deux séries convergentes La série somme ? (un + vn) est convergente et on a ? n = 0



[PDF] Sommaire 1 Convergence des Séries Numériques

Il est quand même rare de savoir calculer facilement la somme exacte d'une série numérique Ce qui fait l'importance du calcul approché de ces sommes 7 1



[PDF] Séries numériques (résumé de cours)

On peut définir de même la notion de convergence de la série ?n?p un si un n'est définie La série (? un) est convergente ssi a < 1 et la somme

  • Comment calculer la somme d'une série numérique ?

    Lorsqu'une telle série est convergente, on note ? n = n 0 + ? u n ou sa somme ? n = n 0 + ? u n (le choix de l'une ou l'autre notation étant d'ordre typographique et non mathématique) c'est-à-dire la limite de la suite ( ? k = n 0 n u k ) quand tend vers .
  • Comment calculer la somme d'une série convergente ?

    A partir d'une suite, les mathématiciens définissent sa somme partielle, l'addition des k premiers termes de la suite : pour la suite (un), la somme partielle vaut ?kn=0un.
  • Comment calculer la somme partielle d'une série numérique ?

    La convergence de la série de Riemann de terme général 1/ns (s > 0) s'établit facilement, pour s supérieur à 1, par comparaison à l'intégrale de la fonction f : x ? 1/xs = x-s sur l'intervalle [1,+?[. f décroît strictement et on a pour tout p : . L'aire correspondant à la somme de la série est indiquée en jaune.
Séries

SériesDans ce chapitre nous allons nous intéresser à des sommes ayant une infinité de termes. Par exemple que peut bien

valoir la somme infinie suivante : 1+12 +14 +18 +116
+=?2 11 21
4

Cette question a été popularisée sous le nom duparadoxe de Zénon. On tire une flèche à2mètres d"une cible. Elle

met un certain laps de temps pour parcourir la moitié de la distance, à savoir un mètre. Puis il lui faut encore du

temps pour parcourir la moitié de la distance restante, et de nouveau un certain temps pour la moitié de la distance

encore restante. On ajoute ainsi une infinité de durées non nulles, et Zénon en conclut que la flèche n"atteint jamais

sa cible! Zénon ne concevait pas qu"une infinité de distances finies puisse être parcourue en un temps fini. Et pourtant

nous allons voir dans ce chapitre que la somme d"une infinité de termes peut être une valeur finie.

1. Définitions - Série géométrique

1.1. DéfinitionsDéfinition 1.

Soit(uk)k>0une suite de nombres réels (ou de nombres complexes). On pose S n=u0+u1+u2++un=n X k=0u k. La suite(Sn)n>0s"appelle lasériede terme généraluk.

Cette série est notée par la somme infinieX

k>0u k. La suite(Sn)s"appelle aussi lasuite des sommes partielles.Exemple 1.

Fixonsq2C. Définissons la suite(uk)k>0paruk=qk; c"est une suite géométrique. Lasérie géométriqueX

k>0q kest la suite des sommes partielles : S

0=1S1=1+q S2=1+q+q2...Sn=1+q+q2++qn...Définition 2.

SÉRIES1. DÉFINITIONS- SÉRIE GÉOMÉTRIQUE2Si la suite(Sn)n>0admet une limite finie dansR(ou dansC), on note

S=+1X k=0u k=limn!+1Sn.On appelle alorsS=P+1 k=0uklasommede la sérieP k>0uk, et on dit que la série estconvergente. Sinon, on dit

qu"elle estdivergente.Notations.On peut noter une série de différentes façons, et bien sûr avec différents symboles pour l"indice :

+1X i=0u iX n2Nu nP k>0ukX u k. Pour notre part, on fera la distinction entre une série quelconque X k>0u k , et on réservera la notation +1X k=0u k

à une série

convergente ou à sa somme.

1.2. Série géométriqueProposition 1.

Soit q2C. La série géométriqueP

k>0qkest convergente si et seulement sijqj<1. On a alors+1X k=0q S n=1+q+q2+q3++qn. Écartons tout de suite le casq=1, pour lequelSn=n+1. Dans ce casSn!+1, et la série diverge.

Soitq6=1 et multiplionsSnpar 1q:

(1q)Sn= (1+q+q2+q3++qn)(q+q2+q3++qn+1) =1qn+1 DoncS n=1qn+11qSijqj<1, alorsqn!0, doncqn+1!0 et ainsiSn!11q. Dans ce cas la sérieP k>0qkconverge.

Sijqj>1, alors la suite(qn)n"a pas de limite finie (elle peut tendre vers+1, par exemple siq=2; ou bien être

divergente, par exemple siq=1). Donc sijqj>1,(Sn)n"a pas de limite finie, donc la sérieP k>0qkdiverge.Exemple 2.1.

Série géométrique de raisonq=12:

+1X k=012 k =1112=2. Cela résout le paradoxe de Zénon : la flèche arrive bien jusqu"au mur! 2. Série géométrique de raisonq=13, avec premier terme13

3. On se ramène à la série géométrique commençant à

k=0en ajoutant et retranchant les premiers termes : +1X k=313 k +1X k=013 k 113
13

2=1113

139=32

139=118.

3.Le fait de calculer la somme d"une série à partir dek=0est purement conventionnel. On peut toujours effectuer

un changement d"indice pour se ramener à une somme à partir de0. Une autre façon pour calculer la même série

+1X k=313 kque précédemment est de faire le changement d"indicen=k3 (et donck=n+3) : +1X k=313 k=+1X n=013 n+3=+1X n=013 313
n=13 3+1X n=013 n=127 1113
=118 4. +1X 2k =+1X 14 k =1114 =45 SÉRIES1. DÉFINITIONS- SÉRIE GÉOMÉTRIQUE3

1.3. Séries convergentesLa convergence d"une série ne dépend pas de ses premiers termes : changer un nombre fini de termes d"une série

ne change pas sa nature, convergente ou divergente. Par contre, si elle est convergente, sa somme est évidemment

modifiée.

Une façon pratique d"étudier la convergence d"une série est d"étudier son reste : lereste d"ordrend"une série

convergenteP+1 k=0ukest : R n=un+1+un+2+=+1X k=n+1u kProposition 2. Si une série est convergente, alors S=Sn+Rn(pour tout n>0) etlimn!+1Rn=0.Démonstration. •S=P+1 k=0uk=Pn k=0uk+P+1 k=n+1uk=Sn+Rn. DoncRn=SSn!SS=0 lorsquen!+1.1.4. Suites et séries

Il n"y a pas de différence entre l"étude des suites et des séries. On passe de l"une à l"autre très facilement.

Tout d"abord rappelons qu"à une sérieP

k>0uk, on associe la somme partielleSn=Pn k=0uket que par définition la série est convergente si la suite(Sn)n>0converge.

Réciproquement si on veut étudier une suite(ak)k>0on peut utiliser le résultat suivant :Proposition 3.

Unesomme télescopiqueest une série de la formeX k>0(ak+1ak). Cette série est convergente si et seulement si`:=limk!+1akexiste et dans ce cas on a : +1X k=0(ak+1ak) =`a0.Démonstration. S n=n X k=0(ak+1ak) = (a1a0)+(a2a1)+(a3a2)++(an+1an) =a0+a1a1+a2a2++anan+an+1 =an+1a0Voici un exemple très important pour la suite.

Exemple 3.

La série

+1X k=01(k+1)(k+2)=112+123+134+

est convergente et a la valeur1. En effet, elle peut être écrite comme somme télescopique, et plus précisément la

somme partielle vérifie : S n=n X k=01(k+1)(k+2)=n X

1k+11k+2‹

=11n+2!1 lorsquen!+1 Par changement d"indice, on a aussi que les sériesP+1 k=11k(k+1)etP+1 k=21k(k1)sont convergentes et de même somme1. SÉRIES1. DÉFINITIONS- SÉRIE GÉOMÉTRIQUE4

1.5. Le terme d"une série convergente tend vers0Théorème 1.

Si la sérieP

k>0ukconverge, alors la suite des termes généraux(uk)k>0tend vers0.Le point clé est que l"on retrouve le terme général à partir des sommes partielles par la formule

u n=SnSn1.

Démonstration.Pour toutn>0, posonsSn=Pn

k=0uk. Pour toutn>1,un=SnSn1. SiP k>0ukconverge, la suite

(Sn)n>0converge vers la sommeSde la série. Il en est de même de la suite(Sn1)n>1. Par linéarité de la limite, la

suite(un)tend versSS=0.La contraposée de ce résultat est souvent utilisée : Une série dont le terme général ne tend pas vers 0 ne peut pas converger.

Par exemple les séries

P k>1(1+1k )etP k>1k2sont divergentes. Plus intéressant, la sériePukde terme général u k=1 sik=2`pour un certain`>0

0 sinon

diverge. En effet, même si les termes valant 1 sont très rares, il y en a quand même une infinité!

1.6. LinéaritéProposition 4.

SoientP+1

k=0aketP+1 k=0bkdeux séries convergentes de sommes respectivesAetB, et soient,2R(ouC). Alors la sérieP+1 k=0(ak+bk)est convergente et de sommeA+B. On a donc +1X k=0(ak+bk) =+1X k=0a k++1X k=0b k.Démonstration.A n =Pn k=0ak!A2C,Bn=Pn k=0bk!B2C. DoncPn k=0(ak+bk) =Pn k=0ak+Pn k=0bk=

An+Bn!A+B.Par exemple :

+1X 12 k+53 k‹ =+1X k=012 k+5+1X k=013 k=1112 +51113
=2+532 =192

Comme application pour les séries à termes complexes, la convergence équivaut à celle des parties réelle et imaginaire :Proposition 5.

Soit(uk)k>0une suite de nombres complexes. Pour toutk, notonsuk=ak+ibk, avecakla partie réelle deuketbkla

partie imaginaire. La sériePukconverge si et seulement si les deux sériesPaketPbkconvergent. Si c"est le cas, on

a : +1X k=0u k=+1X k=0a k+i+1X k=0b k.Exemple 4. Considérons par exemple la série géométriqueP k>0rk, oùr=eiest un complexe de module <1et d"argument Comme le module derest strictement inférieur à 1, alors la série converge et +1X k=0r k=11r. SÉRIES1. DÉFINITIONS- SÉRIE GÉOMÉTRIQUE5 D"autre part,rk=keikpar la formule de Moivre. Les parties réelle et imaginaire derksont a k=kcos(k)etbk=ksin(k). On déduit de la proposition précédente que : +1X k=0a k=Re‚ +1X k=0r kŒ et+1X k=0b k=Im‚ +1X k=0r kŒ

Le calcul donne :

+1X k=0 kcos(k) =1cos1+22coset+1X k=0 ksin(k) =sin1+22cos.

1.7. Sommes de sériesPour l"instant, il n"y a pas beaucoup de séries dont vous connaissez la somme, à part les séries géométriques. Il faudra

attendre d"autres chapitres et d"autres techniques pour calculer des sommes de séries. Dans ce chapitre on s"intéressera

essentiellement à savoir si une série converge ou diverge.

Voici cependant une exception!

Exemple 5.

Soitq2Ctel quejqj<1. Que vaut la somme

+1X k=0kq k? Admettons un moment que cette série converge et notonsS=P+1 k=0kqk.

Écrivons :

S=+1X k=0kq k=+1X k=1kq k=q+1X k=1kq k1 =q+1X k=1q k1+q+1X k=1(k1)qk1 =q+1X k=1q k1+q+1X k 0=0k

0qk0en posantk0=k1

=q+1X k=1q k1+qS En résolvant cette équation enS, on trouve que (1q)S=q+1X k=1q k1.

Cette dernière série est une série géométrique de raisonqavecjqj<1donc converge. Cela justifie la convergence de

S. Ainsi (1q)S=q11q.

Conclusion :

S=+1X k=0kq k=q(1q)2.

1.8. Critère de Cauchy

Attention!

Il existe des sériesP

k>0uktelles quelimk!+1uk=0, maisP k>0ukdiverge. L"exemple le plus classique est lasérie harmonique:La série X k>11k =1+12 +13 +14 +diverge SÉRIES1. DÉFINITIONS- SÉRIE GÉOMÉTRIQUE6

Plus précisément, on a lim

n!+1Sn= +1. Cependant on auk=1k !0 (lorsquek!+1). Pour montrer que la série diverge nous allons utiliser le critère de Cauchy.

Rappel.Une suite(sn)de nombres réels (ou complexes) converge si et seulement si elle est une suite de Cauchy,

c"est-à-dire :

8 >09n02N8m,n>n0jsnsmj<

Pour les séries cela nous donne :Théorème 2(Critère de Cauchy).

Une série

+1X k=0u kconverge si et seulement si

8 >09n02N8m,n>n0un++um< .On le formule aussi de la façon suivante :

8 >09n02N8m,n>n0

quotesdbs_dbs28.pdfusesText_34
[PDF] comment calculer la somme d'une série

[PDF] somme double i/j

[PDF] garam

[PDF] exercice corrigé rdm portique

[PDF] exercice rdm poutre corrigé

[PDF] exercice portique hyperstatique

[PDF] exercices corrigés rdm charges réparties

[PDF] exercice corrigé portique hyperstatique

[PDF] exercice corrigé poutre hyperstatique

[PDF] calcul de structure cours

[PDF] exercice corrigé portique isostatique

[PDF] methode des forces exercices corrigés pdf

[PDF] portique hyperstatique corrigé

[PDF] théorème des trois moments exercices corrigés

[PDF] définition d'une surface