[PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES





Previous PDF Next PDF



LES SUITES

c) la suite (un) est monotone si elle est croissante ou décroissante ; d) la suite (un) est DÉMONTRER QU'UNE SUITE EST ARITHMÉTIQUE. Une suite (un) est ...



Fiche de synthèse sur les suites Fiche de synthèse sur les suites

Sauf indication contraire les suites seront définies pour tout entier naturel n. Comment montrer qu'une suite (Un) est croissante ou décroissante ?



Comment démontrer quune suite ( )un est croissante ou

est croissante ou décroissante ? Comment montrer qu'une suite ( )un est croissante ? (Strictement croissante ?) Méthode 1. ? On montre ?n un+1. ?unÃ0.



SUITES RÉELLES Table des mati`eres 1. Généralités 1 2

On dit qu'une suite est monotone si elle est croissante ou décroissante. Montrer qu'une suite réelle croissante `a partir d'un certain rang est minorée.



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Méthode : Démontrer si une suite est arithmétique. Vidéo https://youtu.be/YCokWYcBBOk Si 0 < q < 1 alors la suite (un) est décroissante.



Suites : Rappels récurrence

Remarque : Pour montrer qu'une suite est géométrique on montrera que la différence un+1 Une suite (un) est décroissante si



GÉNÉRALITÉS SUR LES SUITES

On en déduit que (un) est décroissante. Remarque : La réciproque de la propriété énoncée plus haut est fausse. La représentation suivante montre une suite 



Chapitre 4: Croissance divergence et convergence des suites - 4.1

Une suite est décroissante si chaque terme est inférieur ou égal Montrer qu'à partir d'un certain indice n0 à déterminer tous les termes de la suite ...



Suites 1 Convergence

Montrer qu'une suite d'entiers qui converge est constante à partir d'un certain rang. Montrer que un = Hn ?ln(n) est décroissante et positive.



Fiche méthode n°5 – Suites numériques un >1 . un+2=aun+1+b un

Montrer par récurrence que pour tout n?? un+1?un . Ajuster ces arguments convenablement pour montrer qu'une suite est décroissante. Pour montrer qu'une 



[PDF] LES SUITES

Définition 1 1 2 Soit (un) une suite On dit que : a) la suite (un) est croissante si pour tout n ? : un ? un+1 ; b) la suite (un) est décroissante si 



[PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Méthode : Démontrer si une suite est arithmétique Vidéo https://youtu be/YCokWYcBBOk Si 0 < q < 1 alors la suite (un) est décroissante



[PDF] Chapitre 4: Croissance divergence et convergence des suites

f) Montrer que la suite (un) est décroissante g) Quelle conjecture peut-on faire en ce qui concerne la limite de la suite (un) ?



Montrer quune suite est croissante (ou décroissante) - Maths-coursfr

la suite ( u n ) \left(u_{n}\right) (un) est croissante si pour tout entier naturel n n n : u n + 1 ? u n u_{n+1} \geqslant u_{n} un+1?un · la suite ( 



[PDF] Fiche de synthèse sur les suites

Comment montrer qu'une suite (Un) est croissante ou décroissante ? Attention on ne peut pas se contenter de calculer quelques termes ! Rappel : Dire qu'une 



[PDF] Suites 1 Convergence - Exo7 - Exercices de mathématiques

Montrer que un = Hn ?ln(n) est décroissante et positive 1 Page 2 5 Conclusion ? Indication ? Correction ?



[PDF] [PDF] Suites - Exo7 - Cours de mathématiques

Est-il vrai qu'une suite croissante est minorée? Majorée? 5 Soit x > 0 un réel Montrer que la suite xn n! n? est décroissante à partir d'un certain rang



[PDF] Chapitre 11 - Monotonie dune suite et limite

Vocabulaire : une suite croissante ou décroissante est dite monotone Traiter les exercices 5559 page 67 Indication : pour montrer qu'une suite est monotone 



[PDF] Suites - Licence de mathématiques Lyon 1

Montrer que la suite est décroissante 3 Montrer que la suite est convergente et déterminer sa limite Allez à : Correction exercice 23 : Exercice 24 :



[PDF] Suites numériques

On dit que l ? C est limite d'une suite complexe (un)n?k0 si Cette contradiction montre qu'on a forcément l = l D Puisqu'une suite (un)n?k0 ne 

  • Comment démontrer que la suite est décroissante ?

    Pour déterminer le sens de variation d'une suite (un), on peut utiliser l'une des règles suivantes : a) On étudie le signe de la différence un+1 ? un. ? Si un+1 ? un est positive, alors la suite (un) est croissante. ? Si un+1 ? un est négative, alors la suite (un) est décroissante.
  • Comment savoir si une suite arithmétique est décroissante ?

    Propriété : (un) est une suite arithmétique de raison r. - Si r > 0 alors la suite (un) est croissante. - Si r < 0 alors la suite (un) est décroissante.
  • Comment montrer qu'une suite est croissante à partir d'un certain rang ?

    Démontrer que la suite (un) est croissante à partir d'un certain rang. n+1 ? u n ? 0 pour 2n ? 3? 0 donc pour n ?1,5. n+1 ? u n ? 0 . On en déduit qu'à partir du rang 2, la suite (un) est croissante.
  • Par exemple, un+1 est le terme de rang n + 1 (celui qui suit un) alors que un +1 est le terme de rang n augmenté de 1.
SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr1SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES I. Suites arithmétiques 1) Définition Exemple : Considérons une suite numérique (un) où la différence entre un terme et son précédent reste constante et égale à 5. Si le premier terme est égal à 3, les premiers termes successifs sont : u0 = 3, u1 = 8, u2 = 13, u3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3. La suite est donc définie par : 0

1 3 5 nn u uu

. Définition : Une suite (un) est une suite arithmétique s'il existe un nombre r tel que pour tout entier n, on a : 1nn

uur

. Le nombre r est appelé raison de la suite. Méthode : Démontrer si une suite est arithmétique Vidéo https://youtu.be/YCokWYcBBOk 1) La suite (un) définie par :

u n =7-9n est-elle arithmétique ? 2) La suite (vn) définie par : v n =n 2 +3 est-elle arithmétique ? 1) u n+1 -u n =7-9n+1 -7+9n=7-9n-9-7+9n=-9

. La différence entre un terme et son précédent reste constante et égale à -9. (un) est une suite arithmétique de raison -9. 2)

v n+1 -v n =n+1 2 +3-n 2 -3=n 2 +2n+1+3-n 2 -3=2n+1

. La différence entre un terme et son précédent ne reste pas constante. (vn) n'est pas une suite arithmétique. Vidéo https://youtu.be/6O0KhPMHvBA

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr2Propriété : (un) est une suite arithmétique de raison r et de premier terme u0. Pour tout entier naturel n, on a :

u n =u 0 +nr

. Démonstration : La suite arithmétique (un) de raison r et de premier terme u0 vérifie la relation

u n+1 =u n +r . En calculant les premiers termes : u 1 =u 0 +r u 2 =u 1 +r=u 0 +r +r=u 0 +2r u 3 =u 2 +r=u 0 +2r +r=u 0 +3r u n =u n-1 +r=u 0 +(n-1)r +r=u 0 +nr

. Méthode : Déterminer la raison et le premier terme d'une suite arithmétique Vidéo https://youtu.be/iEuoMgBblz4 Considérons la suite arithmétique (un) tel que

u 5 =7 et u 9 =19

. 1) Déterminer la raison et le premier terme de la suite (un). 2) Exprimer un en fonction de n. 1) Les termes de la suite sont de la forme

u n =u 0 +nr

Ainsi 50

57uur=+=

et 90

919uur=+=

. On soustrayant membre à membre, on obtient :

5r-9r=7-19

donc r=3 . Comme u 0 +5r=7 , on a : u 0 +5×3=7 et donc : u 0 =-8 . 2) 0n uunr=+ soit 83 n un=-+× ou encore 38 n un=-

2) Variations Propriété : (un) est une suite arithmétique de raison r. - Si r > 0 alors la suite (un) est croissante. - Si r < 0 alors la suite (un) est décroissante. Démonstration :

u n+1 -u n =u n +r-u n =r . - Si r > 0 alors u n+1 -u n >0 et la suite (un) est croissante. - Si r < 0 alors u n+1 -u n <0 et la suite (un) est décroissante. Exemple : Vidéo https://youtu.be/R3sHNwOb02M

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr3La suite arithmétique (un) définie par

u n =5-4n

est décroissante car de raison négative et égale à -4. 3) Représentation graphique Les points de la représentation graphique d'une suite arithmétique sont alignés. Exemple : On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4. RÉSUMÉ (un) une suite arithmétique - de raison r - de premier terme u0. Exemple : r=-0,5

et u 0 =4

Définition

u n+1 =u n +r u n+1 =u n -0,5 La différence entre un terme et son précédent est égale à -0,5. Propriété u n =u 0 +nr u n =4-0,5n Variations Si r > 0 : (un) est croissante. Si r < 0 : (un) est décroissante. r=-0,5<0

La suite (un) est décroissante. Représentation graphique Remarque : Les points de la représentation graphique sont alignés.

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr4II. Suites géométriques 1) Définition Exemple : Considérons une suite numérique (un) où le rapport entre un terme et son précédent reste constant et égale à 2. Si le premier terme est égal à 5, les premiers termes successifs sont : u0 = 5, u1 = 10, u2 = 20, u3 = 40. Une telle suite est appelée une suite géométrique de raison 2 et de premier terme 5. La suite est donc définie par :

u 0 =5 u n+1 =2u n

Vidéo https://youtu.be/WTmdtbQpa0c Définition : Une suite (un) est une suite géométrique s'il existe un nombre q tel que pour tout entier n, on a :

u n+1 =q×u n

. Le nombre q est appelé raison de la suite. Méthode : Démontrer si une suite est géométrique Vidéo https://youtu.be/YPbEHxuMaeQ La suite (un) définie par :

u n =3×5 n est-elle géométrique ? u n+1 u n

3×5

n+1

3×5

n 5 n+1 5 n =5 n+1-n =5

. Le rapport entre un terme et son précédent reste constant et égale à 5. (un) est une suite géométrique de raison 5 et de premier terme

u 0 =3×5 0 =3

. Exemple concret : On place un capital de 500€ sur un compte dont les intérêts annuels s'élèvent à 4%. Chaque année, le capital est multiplié par 1,04. Ce capital suit une progression géométrique de raison 1,04. On a ainsi : u

1 =1,04×500=520 u 2 =1,04×520=540,80 u 3 =1,04×540,80=562,432

De manière générale : u

n+1 =1,04×u n avec u 0 =500 On peut également exprimer un en fonction de n : u n =500×1,04 n

Propriété : (un) est une suite géométrique de raison q et de premier terme u0. Pour tout entier naturel n, on a :

u n =u 0 ×q n

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr5Démonstration : La suite géométrique (un) de raison q et de premier terme u0 vérifie la relation

u n+1 =q×u n . En calculant les premiers termes : u 1 =q×u 0 u 2 =q×u 1 =q×q×u 0 =q 2 ×u 0 u 3 =q×u 2 =q×q 2 ×u 0 =q 3 ×u 0 u n =q×u n-1 =q×q n-1 u 0 =q n ×u 0

. Méthode : Déterminer la raison et le premier terme d'une suite géométrique Vidéo https://youtu.be/wUfleWpRr10 Considérons la suite géométrique (un) tel que

u 4 =8 et u 7 =512

. Déterminer la raison et le premier terme de la suite (un). Les termes de la suite sont de la forme

u n =q n ×u 0 . Ainsi u 4 =q 4 ×u 0 =8 et u 7 =q 7 ×u 0 =512 . Ainsi : u 7 u 4 q 7 ×u 0 q 4 ×u 0 =q 3 et u 7 u 4 512
8 =64 donc q 3 =64

. On utilise la fonction racine troisième de la calculatrice pour trouver le nombre qui élevé au cube donne 64. Ainsi

q=64 3 =4 Comme q 4 ×u 0 =8 , on a : 4 4 ×u 0 =8 et donc : u 0 1 32

. 2) Variations Propriété : (un) est une suite géométrique de raison q et de premier terme non nul u0. Pour

u 0 >0

: - Si q > 1 alors la suite (un) est croissante. - Si 0 < q < 1 alors la suite (un) est décroissante. Pour

u 0 <0

: - Si q > 1 alors la suite (un) est décroissante. - Si 0 < q < 1 alors la suite (un) est croissante. Démonstration dans le cas où u0 > 0 :

u n+1 -u n =q n+1 u 0 -q n u 0 =u 0 q n (q-1) . - Si q > 1 alors u n+1 -u n >0 et la suite (un) est croissante. - Si 0 < q < 1 alors u n+1 -u n <0 et la suite (un) est décroissante.quotesdbs_dbs29.pdfusesText_35
[PDF] un+1/un suite géométrique

[PDF] calcul de pente exercices cm2

[PDF] formule de topographie

[PDF] exercice densité 6e

[PDF] distance point plan formule

[PDF] distance d'une droite ? un plan

[PDF] distance point plan demonstration

[PDF] distance d'un point ? un plan terminale s

[PDF] distance d'un point ? un plan produit vectoriel

[PDF] calculer la distance du point o au plan abc

[PDF] séquence course longue cm1

[PDF] unité d'apprentissage course longue cycle 3

[PDF] séquence course longue cycle 3

[PDF] course en durée lycée

[PDF] séquence endurance cm1