[PDF] Math2 – Chapitre 3 Intégrales multiples





Previous PDF Next PDF



Chapitre 3 Intégrale double

= 153. Exercice 3.1. Calculer la surface du domaine D décrit dans l'exemple 3.12. 3.3.2 Intégrales sur un domaine 



Math2 – Chapitre 3 Intégrales multiples

Pour connaitre l'intégral il suffit de connaitre une primitive: Exemple 2: calcul d'intégrales doubles ... Exemple 3: calcul d'intégrale double.



Intégrales de fonctions de plusieurs variables

Il nous dit par exemple que pour toute fonction dérivable u



Changement de variables dans une intégrale multiple

double la méthode de base donnée par le théorème de Fubini consiste à intégrer sur les Pour ce type d'exemple on a donc tout intérêt à introduire et.



Chapitre17 : Intégrale double

Toute fonction continue sur un compact de R2 à valeurs dans R est bornée. C) Exemple important : changement de variable affine. 1. On suppose ici que ? est une 



Sommaire Figures 1. Intégrales doubles

En un mot on transforme cette intégrale double en 2 intégrales simples emboîtées. Exemple : On va intégrer la fonction (x



3.2 Succession dintégrales simples - Théorème de Fubini

Ceci n'est pas le fait du hasard mais est dû au théorème suivant que nous admettrons. 38. Intégrale double. Page 2. Théorème 3.9. (Théorème de Fubini pour 



Chapitre Intégration numérique - simple et multiple

Tr`es souvent le calcul explicite de l'intégrale d'une fonction f Formellement



Corrigé de la feuille TD N?4 - semaine du 17/03/2008 (les énoncés

Exercice 2. (calculer une intégrale double sur un triangle). Soit ? le domaine de R2 bordé par le triangle dont les sommets sont les points A



Chapitre 1 Intégrales doubles et probabilités

Exemple 4. Nous allons calculer la surface d'une ellipse par une intégrale double de la fonction unité sur le domaine. D = {.



Chapitre 3 Intégrale double - unicefr

Chapitre 3 Intégrale double Nous allons supposer le plan usuelR2muni d’un repère orthonormé (Oij) 3 1Aperçu de la dé?nition formelle de l’intégrale double Soit R=[ab]×[cd] (a



Intégrales doubles Calcul d’aires et de - Paris-Saclay

l’Intégrale Double 2) Deuxième Décomposition 1 4- Propriétés de l’intégrale Double 1 5- Changement de variables dans l’intégrale double 2-Intégrales triples 2) Deuxième Décomposition • D un domaine borné de IR2 de frontière ?D intersectée au plus en deux points par toute droite d’équation y=cte



Double integrals - Stankova

The double integrals in the above examples are the easiest types to evaluate because they are examples in which all four limits of integration are constants This happens when the region of integration is rectangular in shape In non-rectangular regions of integration the limits are not all constant so we have to get used to dealing with



CALCUL INTÉGRAL - maths et tiques

Exemple : Avec Python on programme cet algorithme pour la fonction !(()=(# sur l’intervalle [1 ; 2] On exécute plusieurs fois le programme pour obtenir un encadrement de l'intégrale de la fonction carré sur [1 ; 2] En augmentant le nombre de sous-intervalles la précision du calcul s'améliore car



Searches related to intégrale double exemple PDF

etendéduirelavaleurdel’intégrale Z ?/2 0 y tany dy Exercice 50 [ 03690 ] [Correction] Existenceetcalculde I= ZZ]01]2 min(xy) max(xy) dxdy Exercice 51 [ 02557

Quelle est la différence entre l’intégrale double et simple ?

A priori, l’intégrale double est faite pour calculer un volume… de même que l’intégrale simple était faite pour calculer une aire. Si f (x, y) n’est pas à valeurs positives, l’intégrale ne s’interprète plus comme un volume mais la méthode de Riemann est la même.

Quels sont les applications d'une intégrale double ?

Une intégrale double est une intégrale qui s'applique à une fonction de 2 variables. Comment calculer une intégrale double ? Le calcul d'intégrale double, est équivalent à un calcul de deux intégrales consécutives, de la plus intérieure à la plus extérieure.

Qu'est-ce que les doubles intégrales ?

L'introduction de doubles intégrales. La base et la diffusion des diagrammes d'Euler – un graphiques concis et visuels qui montrent les ensembles de relations, quelle que soit leur origine. Par exemple, ils permettent de montrer que l'ensemble infini de nombres naturels est inclus dans l'ensemble infini des nombres rationnels , et ainsi de suite.

Comment calculer les intégrales doubles?

En utilisant cet ordre d’intégration, nous avons deux intégrales doubles à calculer : . La fonction à intégrer ne présentant pas de difficulté (polynôme), nous pouvons choisir n’importe quel ordre d’intégration.

Math2 { Chapitre 3

Integrales multiples

3.1 {

Int egralesde Riemann (rapp elsde TMB)

3.2 {

Int egralesdoubles

3.3 {

Int egralestriples

3.4 {

Aire, volume, mo yenneet centre de masse

3.1 { Integrales de Riemann (rappels de TMB)

Dans cette section:

Subdivisions, somme de Riemann et integrale de Riemann d'une fonction d'une variable

Aire sous le graphe d'une fonction

Primitives et techniques d'integration

Subdivision, somme et integrale de Riemann

Rappels {Soitf:ra;bs ÑRune fonction d'une variable: subdivisiondera;bs:Sn taa0 a1 anbuR aa0 a nb a 1|x 1 a 2|x 2 a 3|x 3 a 4|x 4 a 5|x 5 somme de Riemann defaux pointsxiP rai1;ais: R pf;txiuq n¸ i1fpxiq:xfpxq a b integrale de Riemann defsurra;bs: b a fpxqdxlimnÑ8toutxiR pf;txiuqxfpxq a b si la limite existe, est nie, et ne depend pas desxi.

L'integrale donne l'aire sous le graphe

Rappels -

b a fpxqdxaire \algebrique" sous le graphe def b a |fpxq|dxaire sous le graphe def(positive) xyfpxq |f|f |f||f|Exemple:L'aire du disque se calcule comme une integrale:

AirepDq 2AirepDq 2»

1

1a1x2dxxy?1x2D

Primitives et techniques d'integration

Pour connaitre l'integral, il sut de connaitre une primitive: Uneprimitive defsurra;bsest une fonctionFderivable telle que F

1pxqfpxqpour toutxP ra;bs. On noteFpxq»

fpxqdx.

Theoreme fondamental:»b

a fpxqdxFpbqFpaq rFpxqsba:

Integration par changement de variable:xhptq»

fpxqdx» fhptqh1ptqdt; ouhest un dieomorphisme(bijection derivable avec reciproqueh1derivable).

Integration par parties:»

fpxqg1pxqdxfpxqgpxq » f

1pxqgpxqdx:Probleme {Pas d'analogue pour les fonctions de plusieurs variables!

Exemple: aire d'un disque

Aire d'un disque {

AirepDq 2AirepDq 2»

1

1a1x2dxCalcul par changement de variable:xsintpourtP r2

;2 s, car?1x2cost.Alorsdxcost dtet

AirepDq 2»

{2 {2cos2t dt 2» {2 {2cosp2tq 12 dt 12 sinp2tq t {2 {202 02

3.2 { Integrales doubles

Dans cette section:

Subdivisions des domaines du plan

Sommes de Riemann des fonctions de deux variables

Integrale double

Volume sous le graphe d'une fonction

Theoreme de Fubini

Theoreme du changement de variables

Subdivisions d'un domaine du plan

SoitD€R2un ensemble borne, avec bordBDlisse(au moins par morceaux). Denition {Pour tout¡0, on appellesubdivision deD l'ensembleSdes carresKide cotedu plan qui couvrentDdans n'importe quel grillage de pas.En particulier, on considere deux recouvrements: una l'exterieurSext, una l'interieurSint.S intS extD BDPuisqueDest borne, les subdivisions contiennent un nombre ni de carres, et on aSint€Sext. Les carres dansSextzSintcouvrent exactement le bordBD. Sommes de Riemann d'une fonction de deux variables

Soitf:DÝÑRune fonction de deux variables.

Denition {Pour tout choix de pointspxi;yiq PKiXD, on appellesommes de Riemann defassociees aux subdivisions S ext{int et aux pointstpxi;yiqules sommes R ext{int pf;tpxi;yiquq ¸ K iPSext{int fpxi;yiq2; ou chaque termefpxi;yiq2 represente levolume algebrique(=volume) du parallelepipede de base K iet hauteurfpxi;yiq. xyfpx;yqD

Integrale double

Theoreme {Si les limiteslimÑ0Rext{int

pf;tpxi;yiquqexistent et elles sont independantes du choix des pointspxi;yiq PKiXD, alors elles coincident.Denition {Dans ce cas: on appelleintegrale double defsurDcette limite: D fpx;yqdx dylimÑ0Rext{int pf;tpxi;yiquq: on dit quefest integrable surDselon Riemannsi l'integrale¼ D fpx;yqdx dyest nie (= nombre, pas8).Proposition {Toute fonction f continueest integrable selon Riemann sur un ensemble D bornea bord lisse(par morceaux).

Signication geometrique de l'integrale double

Corollaire {

D fpx;yqdx dyvolume \algebrique" sous le graphe de f . D |fpx;yq|dx dyvolume sous le graphe de f .yz x positifnegatiff |f||f|f

Exemple 1: volume d'une boule

Volume d'une boule {Le volume de la boule

est deux fois le volume de la demi-boule B qui se trouve sous le graphe de la fonction za1x2y2: yz xpx;yqzax 2y2B

On a alors

VolpBq 2¼

Da1x2y2dx dy

Proprietes des integrales doubles

Proprietes {1qPour tout;PR, on a

D fgdx dy¼ D f dx dy¼ D g dx dy:2qSi DD1YD2et D1XD2= courbe ou point ouH, alors D fpx;yqdx dy¼ D

1fpx;yqdx dy¼

D

2fpx;yqdx dy:3q¼

D D D D gpx;yqdx dy:

Theoreme de Fubini sur un rectangle

Theoreme de Fubini sur un rectangle {Soit f:DÝÑRune fonction continue et D ra;bs rc;dsun rectangle. Alors on a D fpx;yqdx dy» b a »d c fpx;yqdy dx d c »b a fpx;yqdx dyNotation { b a dx» d c dy fpx;yq » b a »d c fpx;yqdy dxCorollaire { ra;bsrc;dsf

1pxqf2pyqdx dy»

b a f

1pxqdx»

d c f

2pyqdy

Exemple 2: calcul d'integrales doubles

Exemples {

r0;1sr0;{2sxcosy dx dy» 1 0 x dx» {2 0 cosy dy 12 x21 0 siny {2 012 r1;1sr0;1spx2y1qdx dy» 1

1dx»

1 0 px2y1qdy 1 1dx12 x2y2y y1 y0 1 1 12 x21 dx16 x3x 1 1 53

Theoreme de Fubini

Lemme {Soit D€R2un ensemble borne quelconque.

Pour toutpx;yq PD

il existe a;bPR

Pour tout xP ra;bs

il existe cpxq;dpxq PR

Au nal:xy

bxacpxqdpxqD px;yq PR2|xP ra;bs;yP rcpxq;dpxqs(Theoreme de Fubini surD{Soit f:DÝÑRune fonction continue, alors D fpx;yqdx dy» b a

»dpxq

cpxqfpx;yqdy dx

Theoreme de Fubini (suite)

Alternative {

L'ensembleDest decrit parxy

d y c apyqbpyqD px;yq PR2|yP rc;ds;xP rapyq;bpyqs(Theoreme de Fubini surD{ D fpx;yqdx dy» d c

»bpyq

apyqfpx;yqdx dy

Exemple 3: calcul d'integrale double

Exemple {SoitDla partie du planxOydelimitee par l'arc de paraboleyx2en bas, et la droitey1 en haut.xy y1yx2

1On peut decrireDcomme

D px;yq PR2|xP r1;1s;yP rx2;1s(:Par consequent:

D x

2y dx dy»

1

1x2dx»

1 x 2y dy 1 1x212 y2 1 x 2dx 1 112
px2x4qdx 12 13 x315 x5 x1 x1215

Exemple 4: volume de la boule

Exemple {Rappelons que le volume de la boule unitaire est

VolpBq 2¼

Da1x2y2dx dy

11D ?1x2?1x2On peut decrireDcomme l'ensemble D! px;yq PR2|xP r1;1s;yPa1x2;a1x2)

Voici donc le calcul du volume de la boule:

VolpBq 2»

1

1dx»

?1x2 ?1x2a1x2y2dy 2» 1

1dx»

?1x2 ?1x2a1x2d1y21x2dy:

On posey?1x2sintpour avoirb1y21x2 |cost|.

Exemple 4: volume de la boule (suite)

y?1x2sint dy?1x2cost dt 2 etb1y21x2costVolpBq 2» 1

1dx»

?1x2 ?1x2a1x2d1y21x2dy 2»quotesdbs_dbs22.pdfusesText_28
[PDF] integrale double exo7

[PDF] aire dun domaine compris entre deux courbes

[PDF] intégrale triple

[PDF] la maquette du journal

[PDF] la maquette de la une

[PDF] la maquette d'un journal

[PDF] maquette en arabe

[PDF] prototype définition

[PDF] ou se trouve le sphinx par rapport aux pyramides

[PDF] a quelle heure le roi se rendait a la messe

[PDF] www chateauversailles fr a quelle heure le roi se rendait il a la messe

[PDF] a quelle heure le roi soleil se rendait il a la messe

[PDF] quels auteurs de théâtre ont vu leurs pièces jouées ? versailles

[PDF] pourquoi la table ronde avait cette forme

[PDF] pourquoi la table ronde est ronde