[PDF] Intégrales de fonctions de plusieurs variables





Previous PDF Next PDF



Chapitre 3 Intégrale double

= 153. Exercice 3.1. Calculer la surface du domaine D décrit dans l'exemple 3.12. 3.3.2 Intégrales sur un domaine 



Math2 – Chapitre 3 Intégrales multiples

Pour connaitre l'intégral il suffit de connaitre une primitive: Exemple 2: calcul d'intégrales doubles ... Exemple 3: calcul d'intégrale double.



Intégrales de fonctions de plusieurs variables

Il nous dit par exemple que pour toute fonction dérivable u



Changement de variables dans une intégrale multiple

double la méthode de base donnée par le théorème de Fubini consiste à intégrer sur les Pour ce type d'exemple on a donc tout intérêt à introduire et.



Chapitre17 : Intégrale double

Toute fonction continue sur un compact de R2 à valeurs dans R est bornée. C) Exemple important : changement de variable affine. 1. On suppose ici que ? est une 



Sommaire Figures 1. Intégrales doubles

En un mot on transforme cette intégrale double en 2 intégrales simples emboîtées. Exemple : On va intégrer la fonction (x



3.2 Succession dintégrales simples - Théorème de Fubini

Ceci n'est pas le fait du hasard mais est dû au théorème suivant que nous admettrons. 38. Intégrale double. Page 2. Théorème 3.9. (Théorème de Fubini pour 



Chapitre Intégration numérique - simple et multiple

Tr`es souvent le calcul explicite de l'intégrale d'une fonction f Formellement



Corrigé de la feuille TD N?4 - semaine du 17/03/2008 (les énoncés

Exercice 2. (calculer une intégrale double sur un triangle). Soit ? le domaine de R2 bordé par le triangle dont les sommets sont les points A



Chapitre 1 Intégrales doubles et probabilités

Exemple 4. Nous allons calculer la surface d'une ellipse par une intégrale double de la fonction unité sur le domaine. D = {.



Chapitre 3 Intégrale double - unicefr

Chapitre 3 Intégrale double Nous allons supposer le plan usuelR2muni d’un repère orthonormé (Oij) 3 1Aperçu de la dé?nition formelle de l’intégrale double Soit R=[ab]×[cd] (a



Intégrales doubles Calcul d’aires et de - Paris-Saclay

l’Intégrale Double 2) Deuxième Décomposition 1 4- Propriétés de l’intégrale Double 1 5- Changement de variables dans l’intégrale double 2-Intégrales triples 2) Deuxième Décomposition • D un domaine borné de IR2 de frontière ?D intersectée au plus en deux points par toute droite d’équation y=cte



Double integrals - Stankova

The double integrals in the above examples are the easiest types to evaluate because they are examples in which all four limits of integration are constants This happens when the region of integration is rectangular in shape In non-rectangular regions of integration the limits are not all constant so we have to get used to dealing with



CALCUL INTÉGRAL - maths et tiques

Exemple : Avec Python on programme cet algorithme pour la fonction !(()=(# sur l’intervalle [1 ; 2] On exécute plusieurs fois le programme pour obtenir un encadrement de l'intégrale de la fonction carré sur [1 ; 2] En augmentant le nombre de sous-intervalles la précision du calcul s'améliore car



Searches related to intégrale double exemple PDF

etendéduirelavaleurdel’intégrale Z ?/2 0 y tany dy Exercice 50 [ 03690 ] [Correction] Existenceetcalculde I= ZZ]01]2 min(xy) max(xy) dxdy Exercice 51 [ 02557

Quelle est la différence entre l’intégrale double et simple ?

A priori, l’intégrale double est faite pour calculer un volume… de même que l’intégrale simple était faite pour calculer une aire. Si f (x, y) n’est pas à valeurs positives, l’intégrale ne s’interprète plus comme un volume mais la méthode de Riemann est la même.

Quels sont les applications d'une intégrale double ?

Une intégrale double est une intégrale qui s'applique à une fonction de 2 variables. Comment calculer une intégrale double ? Le calcul d'intégrale double, est équivalent à un calcul de deux intégrales consécutives, de la plus intérieure à la plus extérieure.

Qu'est-ce que les doubles intégrales ?

L'introduction de doubles intégrales. La base et la diffusion des diagrammes d'Euler – un graphiques concis et visuels qui montrent les ensembles de relations, quelle que soit leur origine. Par exemple, ils permettent de montrer que l'ensemble infini de nombres naturels est inclus dans l'ensemble infini des nombres rationnels , et ainsi de suite.

Comment calculer les intégrales doubles?

En utilisant cet ordre d’intégration, nous avons deux intégrales doubles à calculer : . La fonction à intégrer ne présentant pas de difficulté (polynôme), nous pouvons choisir n’importe quel ordre d’intégration.

Integrales de fonctions de plusieurs

variables 1 Vous connaissez les integrales de fonctions d'une variable (parfois appeleeintregrales simples). Sifest une fonction d'une variable, l'integrale defsur un intervalle [a;b] | que l'on noteRb af(x)dx| mesure l'aire de la region du plan situee entre l'axe des abscisses et le graphe def, au-dessus de l'intervalle [a;b]. Pour calculer cette integrale, il sut de trouver uneprimitivede f, c'est-a-dire une fonctionFdont la derivee est egale af; on a alorsRb af(x)dx=F(b)F(a). Le but des chapitres qui suivent est de denir une notion d'integrale pour les fonctions de plusieurs variables. L'une des nouveautes est la richesse des domaines sur lesquelles on peut integrer. En eet, le domaine d'integration d'une integrale simple est toujours un intervalle (ou une union d'intervalles). Par contre, on peut integrer une fonction de deux variables sur un rectangle, un disque, un domaine entoure par une courbe compliquee (on parle d'integrales doubles). On peut integrer une fonction de trois variables sur une sphere, un cylindre, un c^one, un ellipsode,etc.(on parle d'integrales triples). Vous verrez que l'on peut aussi integrer des fonctions de deux variables le long de courbes : on parle d'integrales curvilignes. Vous apprendrez egalement a relier ces dierents types d'integrales : certaines integrales curvilignes le long d'une courbe fermeeCpeuvent s'exprimer comme des integrales doubles sur la region du plan entouree parC(c'est la formule de Green-Riemann). Des integrales de fonctions de plusieurs variables interviennent dans toutes sortes de problemes. Voici quelques exemples (choisis a peu pres au hasard, volontairement tres simplies, et de ce fait peu realistes). Vous souhaitez calculer le volume d'une cheminee centrale nucleaire. Celle-ci est comme tou- jours en forme d'hyperbolode (pour des raisons de solidite et de simplicite de construction).

Le volume de la cheminee s'exprime a l'aide d'une integrale triple facile a calculer.Vous etudiez le champ magnetique cree par une bobine dans laquelle circule un courant

electrique. La valeur du champ en un point s'exprime a l'aide d'une integrale triple que vous devrez evaluer. Notons que l'on ne sait pas calculer explicitement cette integrale; on doit donc l'estimer numeriquement a l'aide d'un ordinateur; on peut aussi calculer une valeur approchee du champ pres de l'axe de la bobine a l'aide de developpements limites). 2 Vous etudiez une sonde spatiale, soumise a l'attraction du Soleil et des planetes a proximite desquelles elle passe, et munie de moteurs lui permettant de suivre une trajectoire calculee a l'avance. Vous voulez calculer le travail de la force d'attraction qu'exerce le Soleil et les planetes sur la sonde au cours de son trajet (ce calcul est | entre autre | necessaire pour evaluer l'energie que consomeront les moteurs de la sonde au cours du trajet). Ce travail s'exprime a l'aide une integrale curviligne le long de la trajectoire de la sonde. En general, on ne saura pas calculer cette integrale explictement (a moins que la trajectoire de la sonde ne

soit tres simple), et on devra avoir recours a un calcul numerique.J'ai evoque ci-dessus, a deux reprises, la necessite de recourrir a des instruments numeriques

pour calculer certaines integrales. De fait, calculer des integrales n'est pas une t^ache aisee. Calculer la derivee d'une fonction est toujours possible, et relativement facile : il sut d'appli- quer un certain nombre de regles de calcul bien connues; il s'agit d'une procedure purement algorithmique. Par contre, si on se donne une fonctionfd'une variable \au hasard", il ne sera pas possible, en general, de calculer explicitement une primitive def. M^eme lorsque cela est possible, il n'existe pas de procedure algorithmique qui fournit la primitive def: il faut \deviner" quelle est la bonne methode a appliquer (integration par partie, changement de variable) pour obtenir la primitive def. C'est pourquoi calculer des integrales de fonc- tions d'une variable, eta fortiorides integrales de fonctions de plusieurs variables ne peut s'apprendre que par la pratique. 3

Chapitre 8

Rappels sur les integrales de

fonctions d'une variable

8.1 Primitives et integralesDenition(Primitive d'une fonction).Uneprimitived'une fonction d'une varaiblefest une

fonctionFdont la derivee est egale af.Proposition 8.1.1(Existence et quasi-unicite d'une primitive).Toute fonction continue

d'une variablefadmet des primitives. De plus, (sur tout intervalle contenu dans l'ensemble de denition def) la dierence entre deux primitives defest une constante. L'existence de primitive n'est pas facile a demontrer. Par contre, il est tres facile de voir que la dierence entre deux primitives d'une m^eme fonction est une constante : en eet, siF1et F

2sont deux primitives d'une fonctionf, alors la derivee deF2F1est nulle (puisqueF2

etF1ont la m^eme deriveef); par consequent,F2F1est une constante (sur tout intervalle contenu dans son ensemble de denition). Considerons maintenant une fonction continue d'une variablef, et un intervalleI= [a;b] contenu dans l'ensemble de denition def. Puisquefest continue, elle admet une primitiveF. De plus, la dierenceF(b)F(a) ne depend pas du choix de la primitiveF. En eet, siGest une autre primitive def, alors il existe une constantectel queGF=c; par consequent, G(b)G(a) =F(b) +c(F(a) +c) =F(b)F(a). Ceci nous permet de denir l'integrale

defsur l'intervalleI= [a;b] :Denition(Integrale d'une fonction d'une variable).Soitfune fonction . On appelleintegrale

defsur l'intervalleIla quantite : Z b a f(x)dx=F(b)F(a): Remarque.La notationdxrefere a une \variation innitesimale" de la variablex. La nota- tionRb af(x)dxindique que l'on integre la quantitef(x) lorsque la variablexvarie entre les 4 bornesaetb. Dans cette notation,xest une variable muette; on peut remplacerxpar une autre variable sans que cela ne change le resultat : Z b a f(x)dx=Z b a f(y)dy=Z b a f(t)dt=Z b a f(u)du=:::

8.2 Integrale et aire sous le graphe

Les integrales ont ete inventees pour calculer des aires. Considerons par exemple une fonction continue d'une variable, et un intervalleI= [a;b] inclus dans le domaine de denition def.

Pour simplier on supposefpositive. L'integraleRb

af(x)dxa ete denie pour calculer l'aire de la regionSdu plan delimitee par la droite verticalex=a, la droite verticalex=b, l'axe des abscisses, et le graphe def(gure ci-dessous). Pour que cela ait un sens, il faut au

prealable denir ce qu'on entend par \l'aire d'une region".8.2.1 Comment denir l'aire d'une region du plan?

Commencons par formuler un certain nombre d'exigences : 1. T outd'ab ord,si D1etD2sont deux regions telles queD1est contenue dansD2, on veut que l'aire deD1inferieure a l'aire deD2. 2. Ensuite, si D1etD2sont deux regions disjointes, on veut que l'aire deD1[D2soit egale a la somme de l'aire deD1et de l'aire deD2. 3. Enn, on v eutque l'aire d 'uncarr ede c^ oteasoit egal aa2. Ces trois exigences nous susent a denir l'aire de n'importe quelle region \par trop biscor- nue" du plan. Considerons une regionDbornee du plan. Si on peut faire tenirncarres de c^otesdeux-a-deux disjoints a l'interieur de la regionD, alors les conditions 1, 2 et 3 impliquent immediatement que l'aire deD(si tant est que l'on puisse la denir) doit ^etre superieure an:2(gure ci-dessous a gauche). De m^eme, si on peut recouvrir la regionD parn+carres de c^otes, alors les conditions 1, 2 et 3 impliquent immediatement que l'aire deDdoit ^etre inferieure an+:2(gure ci-dessous a droite). Par ailleurs, si on a l'impression que, si on choisittres petit, la regionDsera tres bien approchee par une union de carres de c^ote. Resumons cela dans une denition formelle : 5 Denition(Aire d'une region du plan).SoitDune region bornee du plan. Pour tout >0, on notenle nombre maximum de carres de c^otedeux-a-deux disjoints que l'on peut faire tenir dans la regionD, et on noten+le nombre minimum de carres de c^otenecessaires pour recouvrir entierement la regionD. On dit que la regionDestquarrablesi les quantites n :2etn+:2ont la m^eme limite quandtend vers0. Cette limite commune est alors par denition l'airede la regionD. Autrement dit :

Aire(D) = lim!0n:2= lim!0n:2:Il existe des regions du plan (\tres biscornues") telles que les quantitesn:2etn:2n'ont

pas de limites quandtend vers 0, ainsi que des regions telles que les quantitesn:2et n :2ont des limites dierentes quandtend vers 0. L'aire de telles regions ne sont pas ququarrablearrables; leur aire n'est pas bien denie. Neanmoins, toute les regions dont le bord est deni a l'aide de fonctions continues sont quarrables.

8.2.2 Interpretation des integrales simples en termes d'aire.

Nous sommes maintenant en mesure d'enoncer des resultats qui interpretent l'integrale d'une fonction d'une variable comme l'aire d'une region du plan. Pour simplier, commencons par le cas de l'integrale d'une fonction positive : Proposition 8.2.1(Lien entre aire et integrale I).Soitfune fonction d'une variable, et[a;b] un intervalle contenu d'ans l'ensemble de denition def. On supposefcontinue et positive sur[a;b]. On noteDla region situee entre les droites verticalesx=aetx=b, au-dessus de l'axe des abscisses et en dessous du graphe def. Alors la regionDest quarrable, et on a Z b a f(x)dx= Aire(D) (voir la gure de la page precedente). La proposition ci-dessus fait le lien entre aire et integrale d'une fonction continuepositive. Pour une fonction continue de signe quelconque, il faut distinguer la partie du graphe def

situee au-dessus de l'axe des abscisses et celle situee en dessous :Proposition 8.2.2(Lien entre aire et integrale II).Soitfune fonction d'une variable, et

[a;b]un intervalle contenu d'ans l'ensemble de denition def. On noteD+la region situee entre les droites verticalesx=aetx=b, au-dessus de l'axe des abscisses et en dessous 6 du graphe def(region bleue sur la gure ci-dessous). On noteDla region situee entre les droites verticalesx=aetx=b, en-dessous de l'axe des abscisses et au-dessus du graphe def (region jaune sur la gure ci-dessous). Alors les regionsDetD+sont quarrables, et on a Z b a

f(x)dx= Aire(D+)Aire(D):Remarque.La maniere dont j'ai presente les integrales ci-dessus est la plus simple, mais ce

n'est pas la plus \logique". En eet, si on voulait demontrer la proposition 7.1.1 (l'existence d'une primitive pour toute fonction continue), il faut commencer par demontrer une partie de la proposition 7.2.2 (le fait que la region situee entre l'axe des abscisse et le graphe d'une fonction continue est quarrable). La presentation que j'ai choisie ci-dessus a un gros avantage : elle permet de donner tres rapidement une denition de l'integrale d'une fonction continuef (comme dierence de valeurs d'une primitive def). Cette denition est eective : elle permet de calculer des integrales.

8.3 Calcul des integrales

Pour calculer l'integrale d'une fonctionfsur un intervalle [a;b] revient | nous l'avons dit | a trouver une primitive def. Helas, ce n'est pas toujours possible : il n'existe aucun algorithme qui permettrait de trouver une expression explicite d'une primitive de n'importe quelle fonc- tion (elle-m^eme donnee par une formule explicite). Il existe cependant un certain nombre de methodes qui, utilisees judicieusement, permettent de calculer des primitives pour certaines fonctions simples. Nous allons rappeler ces methodes. Tout d'abord, on connait des primitives pour la plupart des fonctions \de base" : 7

FonctionPrimitive

x7!xpour6=1x7!x+1+1+ constantex7!1xx7!lnjxj+ constantex7!exp(x)x7!exp(x) + constantex7!ln(x)x7!xln(x)x+ constantex7!sin(x)x7! cos(x) + constantex7!cos(x)x7!sin(x) + constantex7!tan(x)x7!lnjcos(x)j+ constantex7!cosh(x)x7!sinh(x) + constantex7!sinh(x)x7!cosh(x) + constanteLe tableau ci-dessus fournit les \briques de bases" pour calculer des primitives. Helas, il n'est

pas facile de combiner ces briques de bases entre elles. Certes, pour la somme et le produit

par une constante, tout se passe bien :Proposition 8.3.1.SiFetGsont respectivement des primitives defetg, alorsF+Gest

une primitive def+g. SiFest une primitive def, et siest une constante, alorsFest une primitive def.

... mais ca se g^ate pour le produit, pour le quotient et la composee de deux fonctions :M^eme si on connait des primitives des fonctionsfetg, on ne sait en general calculer ni une

primitive du produitfg, ni une primitive du quotientfg , ni une primitive de la composeefg. Il y a cependant quelques resultats qui aident a s'en sortir dans certain cas. Tout d'abord, si on connait une primitive def, alors, pour toute fonction derivableu, on connait une primitive de la fonctionx7!u0(x):f(u(x)) : 8 Proposition 8.3.2.SiFest une primitive def, et siuest une fonction derivable, alors x7!F(u(x))est une primitive de la fonctionx7!u0(x):f(u(x)) La preuve de cet enonce est immediate : il suti de deriverx7!F(u(x)). Cet enonce est cependant tres souvent utile. Il nous dit par exemple que, pour toute fonction derivableu, la fonctionx7!lnju(x)jest une primitive de la fonctionu0(x)u(x)(la ou cela a un sens, c'est-a-dire en dehors du lieu ouus'annule). C'est ainsi que nous avons pu armer plus haut que la fonctionx7!lnjcos(x)jest une primitive de la fonctionx7!tan(x) =sin(x)cos(x). Si on doit calculer la primitive d'un produit de fonctions, on peut parfois utiliser la formule

d'integration par partiepour transformer ce produit en un autre :Proposition 8.3.3(Integration par partie).Soientfetgdeux fonctions d'une variable, que

l'on suppose derivables, et denies (au moins) sur un intervalle[a;b]. On a Z b a f0(x)g(x)dx=f(b)g(b)f(a)g(a)Z b a f(x)g0(x)dx: Demonstration.La derivee defgestf0g+fg0. Autrement ditfgest une pirmitive def0g+fg0.

Par denition de l'integrale, on a doncRb

af0(x)g(x)+f(x)g0(x)dx=f(b)g(b)f(a)g(a):Exemple.Supposons que l'on veuille calculerRb axsin(x)dx. L'integrande est le produit de la fonctionx7!sin(x) et de la fonctionx7!x. Appliquer la formule d'integration par partie, nous conduira a remplacer l'une de ces fonctions par sa derivee, et l'autre par sa primitive. Cela sera-t-il avantageux? On remarque que la derivee de la fonctionx7!xest une constante (ce qui simplie considerablement la situation, et que la primitive de la fonctionx7!sin(x) estx7! cos(x) (qui n'ets ni plus ni moins compliquee quex7!sin(x)). L'integration par partie semble donc avantageuse. On posef0(x) = sin(x) etg(x) =x, et on obtient Z b a x:sin(x)dx=bcos(b)+acos(a)Z b a cos(x)dx=bcos(b)+acos(a)sin(b)+sin(a):

L'integrale est calculee.

Enn, un outil tres puissant | mais dicile a manipuler | pour calculer des integrales est

le theoreme de changement de variable :Theoreme 8.3.4(Theoreme de changement de variable).Soit[a;b]un intervalle deR, soitu

une fonction denie (au moins) sur[a;b]et derivable, et soitfune fonction continue denie (au moins) sur l'image de l'intervalle[a;b]paru. Alors on a Z b a f(u(x))u0(x)dx=Z u(b) u(a)f(t)dt: Demonstration.SoitFune primitive def. Alorsx7!F(u(x)) est une primitive de la fonction x7!f(u(x))u0(x) (proposition 7.3.2). Par denition de l'integrale, on a donc Z b a f(u(x))u0(x)dx=F(u(b))F(u(a)): 9 Par ailleurs, puisqueFest une primitive def, on a, a nouveau par denition de l'integrale, Z u(b) u(a)f(t)dt=F(u(b))F(u(a)):

En mettant ensemble ces deux egalites, on obtient la formule de changement de variables.En pratique (changement de variable).Il existe deux facon d'appliquer les theoreme

de changement de variable : \En simplian tl' integrande".On a une in tegraleRb ag(x)dxa calculer. On remarque queg(x) est presque de la formef(u(x)) (ou mieuxf(u(x))u0(x)). On change alors de variable en posantt=u(x) (sans oublier que l'on a alorsdt=u0(x)du). On obtient alors l'integrale d'une fonction plus simple... ce qui permet parfois de terminer le calcul. \En compliquan tl'in tegrande".On a une in tegraleRd cf(t)dta calculer. Helas on ne connait pas de primitive def. On peut alors essayer de posert=u(x), et de reecrire notre integrale sous la formeRb af(u(x))u0(x)dx. La nouvelle fonction a integrer est :em- pha priori plus compliquee; il arrive neanmoins que l'on connaisse une primitive de cette fonction plus compliquee. Bien s^ur, toute la diculte consiste a choisir astucieu- sement la fonctionupour obtenir une fonctionf(u(x))u0(x) dont on sait calculer une primitive... Exemple(Un changement de variable ou on \simplie l'integrande").Supposons que l'on veuille calculer l'integraleR1 0e2xe x+1dx. On remarquee2x= (ex)2. L'integrande est donc de la formef(u(x)) avecu(x) =ex, et m^eme de la formeg(u(x)):u0(x). On fait donc le changement de variablet=ex(d'oudt=exdx), et on obtient Z 1 0e 2xe x+ 1dx=Z 1 0e xe x+ 1exdx=t=exZ e

1tt+ 1dt=Z

e 1

11t+ 1dt= [tln(t+ 1)]e

1:

L'integrale est calculee.

Exemple(Un changement de variable ou on \complique l'integrande").Supposons que l'on veuille calculer l'integraleR

0p1t2dt. On ne connait pas de primitive de la fonctionp1t2.

Mais, si on a un peu l'habitude, on repere tout de suite qu'en posantt= sin(x), on pourra proter de la formule de trigonometriep1sin2(x) = cos(x) pour se debarasser de la rcine carree. On fait donc le changement de variablet= sin(x) (d'oudt= cos(x)dx), et on obtient : Z 1

0p1t2dt=t=sin(x)Z

2

0q1sin2(x)cos(x)dx=Z

2

0cos(x)cos(x)dx

Z 2

01 + cos(2x)2

dx=x2 +sin(2x)4 2 0=4

L'integrale est calculee.

10

Chapitre 9

Integrales multiples

9.1 Theoreme de Fubini - Integrales doubles

Considerons une fonction de deux variablesf:R2!Rcontinue, et une regionDdu plan R

2, bornee et contenue dans l'ensemble de denition def.

Nous voulons denir l'integrale de la fonctionfsurD. Pour ce faire, nous allons utiliser ce que nous connaissons deja : les integrales simples,i.e.les integrales de fonctions d'une variable. Autrement dit, on va d'abord integrerfpar rapport a la variablex, en considerant la variable ycomme un parametre. Le resultat de cette premiere integration dependra de la valeur du \parametre"y. On integrera alors ce resultat par rapport ay. Bien entendu, on pourra faire la m^eme chose en echangeant les r^oles dexet dey; nous verrons que cela donne le m^eme resultat. Une des diculte est de tenir compte de la geometrie deD: ce peut ^etre un polygone quelconque, ou un disque, ou la region delimitee par une courbe fermee tres compliquee... Fixer la valeur de la variableyet integrer par rapport axrevient a decouperDen tranches horizontales; xer la valeur de la variablexet integrer par rapport ayrevient a decouperD en tranches verticales Decoupage d'une region bornee en tranches horizontales et verticales. La regionDest bornee; il existe donc des nombresa;b;c;dtels queDest contenu dans le rectangle [a;b][c;d]. Pour integrerf, on veut xer la valeur dex, et faire varieryde manierequotesdbs_dbs22.pdfusesText_28
[PDF] integrale double exo7

[PDF] aire dun domaine compris entre deux courbes

[PDF] intégrale triple

[PDF] la maquette du journal

[PDF] la maquette de la une

[PDF] la maquette d'un journal

[PDF] maquette en arabe

[PDF] prototype définition

[PDF] ou se trouve le sphinx par rapport aux pyramides

[PDF] a quelle heure le roi se rendait a la messe

[PDF] www chateauversailles fr a quelle heure le roi se rendait il a la messe

[PDF] a quelle heure le roi soleil se rendait il a la messe

[PDF] quels auteurs de théâtre ont vu leurs pièces jouées ? versailles

[PDF] pourquoi la table ronde avait cette forme

[PDF] pourquoi la table ronde est ronde