[PDF] Corrigé de la feuille TD N?4 - semaine du 17/03/2008 (les énoncés





Previous PDF Next PDF



Chapitre 3 Intégrale double

= 153. Exercice 3.1. Calculer la surface du domaine D décrit dans l'exemple 3.12. 3.3.2 Intégrales sur un domaine 



Math2 – Chapitre 3 Intégrales multiples

Pour connaitre l'intégral il suffit de connaitre une primitive: Exemple 2: calcul d'intégrales doubles ... Exemple 3: calcul d'intégrale double.



Intégrales de fonctions de plusieurs variables

Il nous dit par exemple que pour toute fonction dérivable u



Changement de variables dans une intégrale multiple

double la méthode de base donnée par le théorème de Fubini consiste à intégrer sur les Pour ce type d'exemple on a donc tout intérêt à introduire et.



Chapitre17 : Intégrale double

Toute fonction continue sur un compact de R2 à valeurs dans R est bornée. C) Exemple important : changement de variable affine. 1. On suppose ici que ? est une 



Sommaire Figures 1. Intégrales doubles

En un mot on transforme cette intégrale double en 2 intégrales simples emboîtées. Exemple : On va intégrer la fonction (x



3.2 Succession dintégrales simples - Théorème de Fubini

Ceci n'est pas le fait du hasard mais est dû au théorème suivant que nous admettrons. 38. Intégrale double. Page 2. Théorème 3.9. (Théorème de Fubini pour 



Chapitre Intégration numérique - simple et multiple

Tr`es souvent le calcul explicite de l'intégrale d'une fonction f Formellement



Corrigé de la feuille TD N?4 - semaine du 17/03/2008 (les énoncés

Exercice 2. (calculer une intégrale double sur un triangle). Soit ? le domaine de R2 bordé par le triangle dont les sommets sont les points A



Chapitre 1 Intégrales doubles et probabilités

Exemple 4. Nous allons calculer la surface d'une ellipse par une intégrale double de la fonction unité sur le domaine. D = {.



Chapitre 3 Intégrale double - unicefr

Chapitre 3 Intégrale double Nous allons supposer le plan usuelR2muni d’un repère orthonormé (Oij) 3 1Aperçu de la dé?nition formelle de l’intégrale double Soit R=[ab]×[cd] (a



Intégrales doubles Calcul d’aires et de - Paris-Saclay

l’Intégrale Double 2) Deuxième Décomposition 1 4- Propriétés de l’intégrale Double 1 5- Changement de variables dans l’intégrale double 2-Intégrales triples 2) Deuxième Décomposition • D un domaine borné de IR2 de frontière ?D intersectée au plus en deux points par toute droite d’équation y=cte



Double integrals - Stankova

The double integrals in the above examples are the easiest types to evaluate because they are examples in which all four limits of integration are constants This happens when the region of integration is rectangular in shape In non-rectangular regions of integration the limits are not all constant so we have to get used to dealing with



CALCUL INTÉGRAL - maths et tiques

Exemple : Avec Python on programme cet algorithme pour la fonction !(()=(# sur l’intervalle [1 ; 2] On exécute plusieurs fois le programme pour obtenir un encadrement de l'intégrale de la fonction carré sur [1 ; 2] En augmentant le nombre de sous-intervalles la précision du calcul s'améliore car



Searches related to intégrale double exemple PDF

etendéduirelavaleurdel’intégrale Z ?/2 0 y tany dy Exercice 50 [ 03690 ] [Correction] Existenceetcalculde I= ZZ]01]2 min(xy) max(xy) dxdy Exercice 51 [ 02557

Quelle est la différence entre l’intégrale double et simple ?

A priori, l’intégrale double est faite pour calculer un volume… de même que l’intégrale simple était faite pour calculer une aire. Si f (x, y) n’est pas à valeurs positives, l’intégrale ne s’interprète plus comme un volume mais la méthode de Riemann est la même.

Quels sont les applications d'une intégrale double ?

Une intégrale double est une intégrale qui s'applique à une fonction de 2 variables. Comment calculer une intégrale double ? Le calcul d'intégrale double, est équivalent à un calcul de deux intégrales consécutives, de la plus intérieure à la plus extérieure.

Qu'est-ce que les doubles intégrales ?

L'introduction de doubles intégrales. La base et la diffusion des diagrammes d'Euler – un graphiques concis et visuels qui montrent les ensembles de relations, quelle que soit leur origine. Par exemple, ils permettent de montrer que l'ensemble infini de nombres naturels est inclus dans l'ensemble infini des nombres rationnels , et ainsi de suite.

Comment calculer les intégrales doubles?

En utilisant cet ordre d’intégration, nous avons deux intégrales doubles à calculer : . La fonction à intégrer ne présentant pas de difficulté (polynôme), nous pouvons choisir n’importe quel ordre d’intégration.

Université de Nice Sophia AntipolisL1 Sciences économiques - GestionMathématiques 2(DL1EMA2)-Unité U5

Année 2007/2008

Enseignant: J. YAMEOGO

Chargés de TD: F. BARKATS, F.-X. DEHON, J. YAMEOGO Corrigé de la feuille TD Nř4 -semaine du 17/03/2008 (les énoncés sont en bleu) Exercice 1. (calculer et majorer une intégrale double sur unrectangle) On considère dansR2le rectangleD={(x, y)?R2/0?x?1,-1?y?1}et la fonction f:D ?Rdéfinie parf(x, y)=x-y+1⎷. a) Expliquer pourquoifest bien définie et continue surD. b) Montrer que pour tout(x, y)?Don af(x, y)<74 c) CalculerI=? ? D f(x, y)dxdy. d) Expliquer pourquoi on aI <72

Solution:

a) On a1?x+1?2et-1?-y?1. En additionnant ces deux inégalités on trouve0?x-y+1?3, ce qui entraîne quex-y+1⎷ est bien définie sur le rectangle en question. fest la composéef2◦f1des fonctions continuesf1:D ?R+etf2:R+?R+définies par: f

1(x, y)=x-y+1,f2(t)=t⎷

fest donc continue en tant que composée de fonctions continues. b) De l"inégalité0?x-y+1?3, il vient que pour tout(x, y)?D, on a0?f(x, y)?3⎷ (car la fonction racine carrée est croissante surR+). Il nous suffit maintenant de vérifier que

3⎷

<74. Ce qui revient à prouver (après élévation au carré), que3<4916. Cette dernière inéga-

lité est évidente car 49
16 =3+1 16. c) Pour calculer l"intégraleI=? ? D f(x, y)dxdy, on utilise le théorème de Fubini: I=? -11 01 x-y+1⎷ dx? dy. On trouveI=4

15(9 3⎷-4 2⎷-1).

d) Sur le rectangleDon a0?f(x, y)<74 (d"après la question b)).

D"où0?I D74 dxdy=74×2=72. 1

Exercice 2. (calculer une intégrale double sur un triangle)SoitΔle domaine deR2, bordé par le triangle dont les sommets sont les pointsA,B, etCde

coordonnées respectives(0,-1),(3,1)et(0,1). a) La droite joignant les pointsAetBadmet une équation ayant l"une des formes suivantes: x=αy+βouy=ax+b(α,β,aetbsont des réels). Donner explicitement une de ces équations (en trouvantαetβouaetb). b) Calculer l"intégraleI=? ? xy2dxdy.

Solution:

a) Les coordonnées du pointAvérifient l"équationx=αy+βsi et seulement si0 =-α+β.

De même les coordonnées du pointbvérifient l"équationx=αy+βsi et seulement si

3=α+β.

Pour trouverαetβil nous suffit de résoudre le système de deux équations à deux inconnues?-α+β=0

α+β=3.

On trouve facilement que ce système admet pour unique solution(α, β)=(32 ,32). La droite joignant les pointsAetBadmet donc pour équationx=32 y+32.

Cette droite admet aussi pour équationy=23

x-1. b) Nous avonsΔ=? (x, y)?R2/-1?y?1,0?x?32 y+32

Poury?[-1,1]fixé, posonsI(y)=?

032
y+32 xy2dx. Par le théorème de Fubini nous obtenonsI=? ? xy2dxdy=? -11

I(y)dy.

On a? 032
y+32 xy2dx=y2?12x2? 032
y+32 =98y2(y+1)2. On en déduitI=98 -11 (y4+2y3+y2)dy. Comme -11 y3dy=0(pour raison de parité), on aI=2×98 01 (y4+y2)dy.

Il ne reste plus qu"à calculer?

01 (y4+y2)dypour conclure. 01 (y4+y2)dy=?15 y5+13y2? 01 =15+13=8 15.

Conclusion:I=65

2 Exercice 3. (dessiner un domaine et calculer une intégrale double dessus) Dans le planR2muni d"un repère orthonormé, on considère le domaineDdéfini par D=? (x, y)?R2/-2?y?2,12 y-1?x?y2? a) Dessiner ce domaine et calculer son aire. b) Soitf:D ?Rdéfinie parf(x, y)=x+y. Calculer l"intégraleI=? ? D f(x, y)dxdy.

Solution:

a)Dest le domaine délimité par les deux droites horizontales d"équationy=-2,y= 2, la droite oblique d"équationx=12 y-1et la parabole d"équationx=y2.

On obtient le dessin suivant:

Calculer l"aire du domaineDrevient par exemple à calculer? ? D dxdy(intégrale double surDde la fonction constante(x, y) ?1). On obtient, par la définition même deD, aire(D)=? -22 (y2-(12 y-1))dy=2? 02 (y2+1)dy(pour des raisons de parité).

D"oùaire(D)=2?13

y3+y? 02 =28

3unités d"aire.

b) La fonctionfest polynomiale, donc continue surDqui est fermé borné.

En utilisant le théorème de Fubini on aI=?

-22 1 2 y-1y 2 (x+y)dx? dy.

PosantI(y)=?

1 2 y-1y 2 (x+y)dx, on trouveI(y)=?12 x2+xy? x=12 y-1x=y2 =12y4+y3-58y2+32y-12.

On en déduitI=?

-22

I(y)dy=2?

02 (12 y4-58y2-12)dy(pour des raisons de parité des termes de

I(y)). Reste donc à calculer?

02 (12 y4-58y2-12)dy.

On obtient?

02 (12 y4-58y2-12)dy=?1

10y5-5

24y3-12y?

02 =3210-4024-1=8 15.

Conclusion:I=1615

3 Exercice 4. (dessiner un domaine et choisir judicieusementun ordre d"intégration) SoitDle domaine du planR2formé des couples(x, y)vérifiant le système:?|y-2|?1 (x-1)(x-y)?0. DessinerDet calculer l"intégraleI=? ? D e(3-x)2dxdy. Solution: L "inégalité|y-2|?1équivaut à-1?y-2?1, c"est-à-dire1?y?3. De même l"inégalité(x-1)(x-y)?0équivaut à???(x-1?0)et(x-y?0) ou (x-1?0)et(x-y?0). En traçant les quatre droites d"équations respectivesy= 1,y= 3,x= 1etx=y, les différentes

inégalités nous permettent de voir queDest le triangle fermé dont les sommets ont pour coordon-

nées(1,1),(3,3)et(1,3),illustré ci-dessous: On peut ainsi écrire:D=?(x, y)?R2/1?x?3,x?y?3?. En utilisant le théorème de Fubini on obtient I=? 13 x3 e(3-x)2dy? dx=? 13 e(3-x)2(3-x)dx=-12 e(3-x)2?

13=e4-1

2 4 Exercice 5. (un changement de variables en coordonnées polaires)

On considère dans le plan muni d"un repère orthonormé, les deux cercles concentriquesΓ1etΓ2

de centreω=(1,1)et de rayons respectifsR1=2etR2=3. SiCest la couronne fermée comprise entre ces deux cercles, on noteKla demi-couronne fermée située dans le demi-plan fermé défini parx?1.

DessinerKet calculerI=? ?

K xydxdy.(On pourra faire un changement de variables en posant: 2 2.) Solution: Pour dessiner le domaineK, il suffit de tracer les deux cercles concentriquesΓ1,Γ2et la droite d"équationx=1. SiMest un point de coordonnées(x, y)appartenant au domaineK, la distancer, deMau pointωde coordonnées(1,1)est comprise entre2et3. Si nous prenonsωcomme origine d"un nouveau repèreR?= (O?, i K, j

K), le vecteurωM=O?M

s"écrit de manière uniqueωM=r(cos(θ)i

K+sin(θ)j

quotesdbs_dbs26.pdfusesText_32
[PDF] integrale double exo7

[PDF] aire dun domaine compris entre deux courbes

[PDF] intégrale triple

[PDF] la maquette du journal

[PDF] la maquette de la une

[PDF] la maquette d'un journal

[PDF] maquette en arabe

[PDF] prototype définition

[PDF] ou se trouve le sphinx par rapport aux pyramides

[PDF] a quelle heure le roi se rendait a la messe

[PDF] www chateauversailles fr a quelle heure le roi se rendait il a la messe

[PDF] a quelle heure le roi soleil se rendait il a la messe

[PDF] quels auteurs de théâtre ont vu leurs pièces jouées ? versailles

[PDF] pourquoi la table ronde avait cette forme

[PDF] pourquoi la table ronde est ronde