[PDF] GÉOMÉTRIE REPÉRÉE Le point H projeté orthogonal





Previous PDF Next PDF



Le plan est muni dun repère orthonormal (O; ? ) Le cercle

11 mai 2018 Soit M le point du cercle trigonométrique associé à un réel x. — Le cosinus du réel x noté cosx



Polycopié dexercices et examens résolus: Mécanique du point

On se place dans l'espace muni d'un repère orthonormée. Pour trouver le rayon du cercle on peut calculer la distance AM(0) par exemple.



Chapitre 3 : Équation du cercle dans le plan

Exercice 3.7: Déterminer les équations des cercles tangents aux trois droites : 3y = 4x – 10 ; 3x = 4y + 5 et 3x – 4y = 15. Exercice 3.8: On propose dans cet 



TRIGONOMÉTRIE

Propriété : La tangente en M au cercle C est la perpendiculaire au rayon en ce point. 2) Définition de l'enroulement. Dans un repère orthonormé O ; i.. ; j.



GÉOMÉTRIE REPÉRÉE

Le point H projeté orthogonal de A sur la droite d



11 : DROITES ET CERCLES DANS UN REPÈRE : exercices - page 1

Le plan est muni d'un repère orthonormé (O;?i ?j ) . Droites. Ex 11-1 : Restituer les notions du cours. 1 ) Donner un vecteur orthogonal au vecteur non nul 



Chapitre8 : Cercles et sphères

Soit ? un repère orthonormé du plan ?. Un point M(x y) appartient au cercle C de centre ?(x0



Dans un repère orthonormal le cercle C a pour équation

Ce cercle a pour centre le point. 1. 1;. 2. A. ?. ?. ?. ?. ?. ? et pour rayon. 1. 2 . Exercice 2 : Dans un repère orthonormal (O;.



Dans un repère (orlj)

y) est un point du cercle.



ÉPREUVES COMMUNES DE CONTRÔLE CONTINU no 2 Sujet 32

2 mai 2020 Dans le plan rapporté à un repère orthonormé le cercle de centre A(?4 ;2) et de rayon r = 2 a pour équation : a. (x +4).



E TS L’espace muni d’un repère orthonormé I Produit scalaire

1 TS L’espace muni d’un repère orthonormé Plan du chapitre : I Produit scalaire norme et distance II Équations cartésiennes de plans III Équations cartésiennes de sphères dans un repère orthonormé



Géométrie dans un repère Exercices

Géométrie dans un repère – Exercices – Seconde – G AURIOL Lycée Paul Sabatier 14 Dans un repère orthonormé on considère les points et

Comment calculer la longueur d'un repère orthonormé ?

Dans un repère, on donne les points de coordonnées : • A (?3 ; 4) • B (1, ?1) Calculer les coordonnées du milieu M du segment [AB]. Dans un repère orthonormé, on donne les points de coordonnées : Calculer la longueur du segment [C D].

Comment faire un plan complexe avec un repère orthonormé ?

Dans le plan complexe muni d’un repère orthonormé , , on aplacé un point d’affixe appartenant à C,puis le point intersection du cercle de centre passant par et du demi-axe ; (voir la figure reproduite ci-contre, et qui devra être refaite sur la feuilleou le cahier). Exprimer l’affixe du point en fonction de .

Où se trouve le repère orthonormé ?

Comme nous supposons dans toute la suite que le poids des individus sont identiques, nous prendrons donc avec . Nous considérons le repère orthonormé dans la bas canonique de .

Comment calculer l'abscisse d'un repère orthonormé ?

Les deux axes sont perpendiculaires et portents des graduations identiques (le point O est équidistant de I et J). Dans un repère orthonormé, l'abscisse xA d'un point A correspond à la valeur obtenue par projection de ce point sur l'axe horizontal (l'axe des abscisses).

1

GÉOMÉTRIE REPÉRÉE

Tout le cours en vidéo : https://youtu.be/EehP4SFpo5c Dans tout le chapitre, on se place dans un repère orthonormé du plan.

Partie 1 : Rappels

Rappels du cours de 2de en vidéo : https://youtu.be/d-rUnClmcCY

Propriétés :

Un vecteur directeur d'une droite d'équation cartésienne )*+,-+.=0 est 12⃗3 5. 1 et 6⃗7

9 sont colinéaires si et seulement si *-'--*'=0.

Dire que deux droites sont parallèles équivaut à dire qu'elles ont des vecteurs directeurs colinéaires. Soit deux points ;3

5 et <3

5.

La distance ;<(ou la norme de ;<

22222⃗

) est : ;<= > Les coordonnées du milieu du segment [;<] sont : ?

Méthode : Déterminer une équation de droite à partir d'un point et d'un vecteur directeur (1)

Vidéo https://youtu.be/NosYmlLLFB4

Déterminer une équation cartésienne de la droite A passant par le point ;3 3 1

5 et de vecteur

directeur 12⃗3 -1 5 5.

Correction

La droite A admet une équation cartésienne de la forme )*+,-+.=0. • Comme 12⃗ 3 -1 5

5 est un vecteur directeur de A, on a : 3

-1 5 5=3 5

Soit )=5 et ,=1.

Une équation de A est donc de la forme 5*+1-+.=0. • Pour déterminer ., il suffit de substituer les coordonnées 3 3 1

5 de ; dans l'équation :

5×3+1×1+.=0

15+1+.=0

16+.=0

.=-16

Une équation de A est donc 5*+--16=0.

2

Remarque

Une autre méthode consiste à utiliser la colinéarité :

Soit un point G3

5 de la droite A.

Comme le point ; appartient également à A, les vecteurs ;G

222222⃗

7 *-3 --1

9 et 12⃗3

-1 5

5 sont

colinéaires, soit : 5 *-3 -1 --1 =0.

Soit encore : 5*+--16=0.

Une équation cartésienne de A est : 5*+--16=0.

Méthode : Déterminer une équation de droite à partir d'un point et d'un vecteur directeur (2)

Vidéo https://youtu.be/i5WD8IZdEqk

Déterminer une équation cartésienne de la droite A passant par les points <3 5 3

5 et H3

1 -3 5.

Correction

< et H appartiennent à A donc 22222⃗ est un vecteur directeur de A.

On a :

22222⃗

3 1-5 -3-3 5=3 -4 -6 5=3

5. Donc )=-6 et ,=4.

Une équation cartésienne de A est de la forme : -6*+4-+.=0. <3 5 3

5 appartient à A donc : -6×5+4×3+.=0 donc .=18.

Une équation cartésienne de A est : -6*+4-+18=0 ou encore -3*+2-+9=0.

Tracer une droite dans un repère :

Vidéo https://youtu.be/EchUv2cGtzo

Partie 2 : Vecteur normal à une droite

Définition : Soit une droite A.

On appelle vecteur normal à la droite A, un vecteur non nul orthogonal à un vecteur directeur de A.

12⃗ est un vecteur directeur

M2⃗ est un vecteur normal

3 Propriété : - Une droite de vecteur normal M2⃗3

5 admet une équation cartésienne de la

forme )*+,-+.=0 où . est un nombre réel à déterminer. - Réciproquement, la droite d'équation cartésienne )*+,-+.=0 admet le vecteur M2⃗3 5 pour vecteur normal.

Démonstration :

- Soit un point ;3

5 de la droite.

G3

5 est un point de la droite si et seulement si ;G

222222⃗

3

5 et M2⃗3

5 sont orthogonaux.

Soit : ;G

222222⃗

.M2⃗=0

Soit encore : )

=0 =0. - Si )*+,-+.=0 est une équation cartésienne de la droite alors 12⃗3

5 est un vecteur

directeur de la droite.

Le vecteur M2⃗3

5 vérifie : 12⃗.M2⃗=-,×)+)×,=0 .

Donc les vecteurs 12⃗ et M2⃗ sont orthogonaux.

Exemple :

Soit la droite d'équation cartésienne 2*-3--6=0.

Un vecteur normal de la droite est M2⃗3

2 -3 5.

Un vecteur directeur de la droite est : 12⃗3

3 2 5. On vérifie que M2⃗ et 12⃗ sont orthogonaux : 12⃗.M2⃗=2×3+ -3

×2=0

Méthode : Déterminer une équation de droite connaissant un point et un vecteur normal

Vidéo https://youtu.be/oR5QoWCiDIo

On considère la droite A passant par le point ;3 -5 4

5 et dont un vecteur normal est le

vecteur M2⃗3 3 -1 5. Déterminer une équation cartésienne de la droite A.

Correction

Comme M2⃗3 3 -1

5 est un vecteur normal de A, une équation cartésienne de A est de la

forme 3*--+.=0 Le point ;3 -5 4

5 appartient à la droite A, donc : 3×

-5 -4+.=0 et donc : .=19. Une équation cartésienne de A est : 3*--+19=0. 4 Méthode : Déterminer les coordonnées du projeté orthogonal d'un point sur une droite

Vidéo https://youtu.be/-HNUbyU72Pc

Soit la droite A d'équation *+3--4=0 et le point ; de coordonnées 3 2 4 5. Déterminer les coordonnées du point O, projeté orthogonal de ; sur la droite A.

Correction

- On commence par déterminer une équation de la droite (;O) :

Comme A et (;O) sont perpendiculaires, un vecteur

directeur de A est un vecteur normal de (;O).

Une équation cartésienne de A est *+3--4=0,

donc le vecteur 12⃗3 -3 1

5 est un vecteur directeur de A.

Et donc 12⃗3

-3 1

5 est un vecteur normal de (;O).

Une équation de (;O) est de la forme :

-3*+-+.=0.

Or, le point ;3

2 4

5appartient à (;O), donc ses

coordonnées vérifient l'équation de la droite.

On a : -3×2+4+.=0 soit .=2.

Une équation de (;O) est donc : -3*+-+2=0.

- O est le point d'intersection de A et (;O), donc ses coordonnées 3

5 vérifient les

équations des deux droites. Résolvons alors le système : P *+3--4=0 -3*+-+2=0 P *=-3-+4 -3 -3-+4 +-+2=0 P *=-3-+4

9--12+-+2=0

P *=-3-+4

10--10=0

Q *=-3-+4 10 10 =1 P *=-3×1+4=1 -=1 Le point O, projeté orthogonal de ; sur la droite A, a pour coordonnées 3 1 1 5. 5

Partie 3 : Équations de cercle

Propriété : Une équation du cercle de centre ;3

5 et de rayon R est :

=R

Éléments de démonstration :

Tout point G3

5 appartient au cercle de centre ;3

5 et de rayon R si et seulement

;G =R

Exemple :

Le cercle de de centre ;3

3 -1

5 et de rayon 5 a pour équation :

*-3 -+1 =25 Méthode : Déterminer une équation d'un cercle

Vidéo https://youtu.be/Nr4Fcr-GhXM

On considère le cercle de centre ;3

4 -1

5 et passant par le point <3

3 5 5.

Déterminer une équation du cercle.

Correction

Le cercle a pour centre le point ;3 4 -1

5 donc une équation du cercle est de la forme :

*-4 --(-1) =R *-4 -+1 =R On détermine le carré du rayon du cercle à l'aide de la formule de la distance : R 3-4 +S5- -1 T -1 +6 =37 Une équation cartésienne du cercle est alors : *-4 -+1 =37. Méthode : Déterminer les caractéristiques d'un cercle

Vidéo https://youtu.be/nNidpOAhLE8

L'équation *

-2*-10-+17=0 est-elle une équation de cercle ? Si oui, déterminer son centre et son rayon.

Correction

-2*-10-+17=0 -2* -10- +17=0 -2*+1 -1+ -10-+25 -25+17=0 *-1 -1+ --5 -25+17=0 *-1 --5 =9 ← car & -2& est le début du développement de &-1 et &-1 -2&+1quotesdbs_dbs44.pdfusesText_44

[PDF] page de présentation cegep rimouski

[PDF] page de présentation cegep edouard montpetit

[PDF] page de présentation cegep montmorency

[PDF] page de présentation cegep marie-victorin

[PDF] page de présentation cegep ste foy

[PDF] lettre de présentation pour un emploi annoncé

[PDF] lettre de présentation personnelle

[PDF] lettre de présentation générale

[PDF] lettre de présentation construction

[PDF] lettre de présentation gratuite

[PDF] lettre de présentation adjointe administrative

[PDF] lettre de présentation candidature spontanée

[PDF] lettre de présentation commis comptable

[PDF] page de présentation udem faculté de médecine

[PDF] page de présentation communication udem