[PDF] TD 1 Intégrales généralisées





Previous PDF Next PDF





Épreuve de Mathématiques 3 Exercice 1 (PT 2013 C)

15 nov. 2013 t2 dt est absolument convergente. Conclusion. lim. T?+?. ? T. 1 sin t t dt existe : L'intégrale. ? +?. 0 sin t t dt converge.



Intégrales impropres

+?. 2. 1 t (ln t)2 dt converge alors notre intégrale initiale est aussi convergente. Mini-exercices.1. Étudier la convergence des intégrales suivantes : ? 



lintégrale de Dirichlet

12 mars 2020 2. t ?? sin(t)/t est continue sur ]0 +?[ et prolongeable par continuité en 0 (valeur 1). L'unique borne impropre est au voisinage.



Chapitre 2 - Intégrales généralisées (ou impropres)

t2 dt. 2.1 Définition et exemples d'intégrales impropres cos(t) dt est divergente puisque la fonction sin(x) ne converge pas lorsque x tend.





Intégrales généralisées

sin(1/t)e?1/tt?k dt. Exercice 2. Calcul fractions rationnelles. Prouver la convergence des intégrales suivantes puis les calculer : 1). ? +? t=0.



Math 256-Intégrales

f(t)dt. La plus intuitive est de voir l'intégrale comme limite d'une somme. ?2/2. 0. 1. ?. 1?x2 dx. On pose x = sin t en choisissant.



TD 1 Intégrales généralisées

16 sept. 2016 en 0+ à 1 en 1 (fausse impropreté). Les changements de variable x = sin. 2 ?



1 Intégrales généralisées

sin(t)dt = 1 ? cos(x) et la fonction cos n'a pas de limite `a l'infini. 2 Calcul pratique des intégrales généralisées. Proposition 2.1 On désigne par [a 



The sine and cosine integrals - Lancaster

Hence also the value of this integral is ? 2 for a0 we deduce Z 1 0 sinatcosat t dt= 1 2 Z 1 0 sin2at t dt= ? 4: (3) We will use this several times later Since sin(a+ b)t+ sin(a b)t= 2sinatcosbt we can also deduce Z 1 0 sinatcosbt t dt= ˆ ? 2 if a>b 0; 0 if b>a 0: (4) Integrating by parts and using (3) and the fact that sin2 t



The sine and cosine integrals - Lancaster

Integrals with Trigonometric Functions Z sinaxdx= 1 a cosax (63) Z sin2 axdx= x 2 sin2ax 4a (64) Z sinn axdx= 1 a cosax 2F 1 1 2; 1 n 2; 3 2;cos2 ax (65) Z sin3 axdx= 3cosax 4a + cos3ax 12a (66) Z cosaxdx=



Evaluation of the sine and cosine integrals - Lancaster

We shall consider the integrals in their various appropriate forms of sint t and cost t We start with the “complete sine integral”: THEOREM 1 We have Z ? 0 sint t dt = ? 2 (1) Note ?rst that there is no problem of convergence at 0 because sint t ? 1 as t ? 0 A very quick and neat proof of (1) (to be seen for example in [Lo



FT SECOND FUNDAMENTAL THEOREM - MIT Mathematics

of variable rule (see (7) p PI 2 in these notes) You get successively t = au dt = adu dt t = adu au = du u We have to change the limits on the integral also: t = a and t = ab correspond respectively to u = 1u = b Thus the rule for changing variable in a de?nite integral gives Z ab a dt t = Z b 1 du u = L(b)



42 Line Integrals - Cornell University

and Cis the curve x= cost;y= sint;z= t0 t 2 4 2 LINE INTEGRALS 3 MATH 294 SPRING 1989 FINAL # 4 294SP89FQ4 tex 4 2 15 Evaluate the path integral I C

What are the integrals of Sint=T and cost=ton intervals?

In these notes, we consider the integrals of sint=tand cost=ton intervals like (0;1),(0; x) and (x;1). Most of the material appeared in [Jam1]. Companion notes [Jam2], [Jam3]deal with integrals ofeit=tpand, more generally,f(t)eit. THEOREM 1. We have Note rst that there is no problem of convergence at 0, becausesint!1 ast!0.

What is the definite integral of from to?

The definite integral of from to , denoted , is defined to be the signed area between and the axis, from to . Both types of integrals are tied together by the fundamental theorem of calculus. This states that if is continuous on and is its continuous indefinite integral, then . This means .

How do you express S(x)2 as an integral?

, we can expressS(x)2as an integral: in which we used (32) and limx!1[xS(x)2] = 0 (recalljS(x)j 2=x). The integral ofC(x)2is similar, with the additional remark that limx!0+[xC(x)2] = 0. We nish with another pair of integrals that require a little more work.

Are the integrals in 32 and 33 double integrals?

Of course, the integrals in (32) and (33) are really double integrals. Formal reversal ofthe double integrals duly delivers the stated values. However, the conditions for reversal ofimproper integrals are not satised, and one should really consider the integral on [0; R] ofRRsintdt=S(x) S(R).

Analyse T4, TD n° 1 / Vendredi 16 septembre 2016

Intégrales généralisées

1. Résumé de cours.

2. Exercices.

Pierre-Jean Hormière

____________ " Si vous avez tout compris, c"est que je n"ai pas été clair. »

Albert Einstein

1. Résumé de cours.

1.1. Intégration sur un segment

On nomme segment un intervalle fermé borné de la droite réelle R. Soient I = [a, b] un segment de R, f une fonction I ® R. Si f est à valeurs positives, on appelle intégrale de f sur le segment I l"aire du domaine

D = { (x, y) Î I´R ; 0 £ y £ f(x) }.

On note alors

b adxxf).( = Aire(D). Si f est à valeurs réelles, on appelle intégrale de f sur le segment I la différence de l"aire du domaine D + = { (x, y) Î I´R ; 0 £ f(x) et 0 £ y £ f(x) } et de l"aire du domaine D - = { (x, y) Î I´R ; f(x) £ 0 et f(x) £ y £ 0 }

On note alors

b adxxf).( = Aire(D+) - Aire(D-).

Il s"agit de l"aire algébrique située entre l"axe Ox et le graphe de f. L"aire arithmétique est alors

donnée par b adxxf.)( = Aire(D+) + Aire(D-). Oui, mais comment définir et calculer cette aire, ces aires ? Cette aire, ces aires, sont-elles toujours définies ? En somme, quelles fonctions sont susceptibles d"intégration ?

Pendant vingt siècles, d"Eudoxe et Archimède à Pascal, les mathématiciens considéraient une

subdivision de I, s = (a = x

0 < x1 < ... < xn = b), calculaient la somme des aires des tuyaux d"orgue

S = 1 0 1)()( n k kkkfxxx, où pour chaque indice k, xk est un point quelconque du segment [xk, xk+1], puis faisaient tendre le pas de la subdivision s, c"est-à-dire |s| = max (x k+1 - xk), vers 0. On démontre que si f est continue, ou continue par morceaux, alors les sommes S ont une limite,

et c"est cette limite que l"on nomme intégrale de f sur I. Pour des fonctions plus générales les

sommes S n"ont pas toujours de limite, et donc l"intégrale n"existe pas toujours.

Ainsi, pour calculer l"aire

b adxx². du domaine D = { (x, y) Î I´R ; 0 £ y £ x2 }, Archimède calcule la somme S = 1 0 1)()( n k kkkfxxx = nab-²))(( 1

0∑

n kabnka , puis fait tendre n vers 0. Il trouve 3

33ab-.

Essayez !...

Jusqu"en 1664, les mathématiciens n"avaient pas d"autre moyen de calculer des intégrales. La

méthode était longue, fastidieuse, et ne fonctionnait que sur un nombre limité de fonctions. En 1665,

Newton et Leibniz ont découvert indépendamment une méthode révolutionnaire pour calculer

2 l"intégrale d"une fonction continue. Pour calculer∫ b adxxf).(, il suffit de disposer d"une primitive de f, c"est-à-dire d"une fonction F dont la dérivée est f. Et alors b adxxf).( = F(b) - F(a).

Ce théorème de Newton-Leibniz est aussi appelé théorème fondamental du calcul différentiel et

intégral, car il établit un pont entre calcul différentiel et calcul intégral. Le calcul d"une intégrale se

ramène au calcul d"une primitive, c"est-à-dire d"une " antidérivée ». Ce théorème a fait faire à

l"analyse un bon spectaculaire au 18 ème siècle. Cependant il s"est heurté à deux sortes de difficultés :

· Si toute fonction continue f a bien une primitive F, c"est-à-dire est une dérivée de F, les fonctions

continues élémentaires, c"est-à-dire sommes, produits, quotients, composées de fonctions usuelles

(fonctions rationnelles, logarithmes, exponentielles, puissances, sinus, cosinus, Arcsin, Arccos,

Arctan, etc) n"ont pas toujours de primitives élémentaires. On peut alors enrichir le bestiaire des

fonctions connues en lui adjoignant de nouvelles fonctions, exponentielles-intégrales, elliptiques,

etc., mais cela demande du travail et de l"érudition.

· On a besoin d"intégrer des fonctions plus générales que les fonctions continues ou continues par

morceaux à valeurs réelles : fonctions à valeurs complexes ou vectorielles, fonctions discontinues.

Riemann, Darboux, Lebesgue, Kurzweil, Henstock, etc., se sont attelés à ces généralisations.

1.2. Calculs d"intégrales et de primitives

Les deux méthodes principales pour calculer intégrales et primitives sont le changement de variables

et l"intégration par parties.

Proposition 1 : Soit F une fonction de classe C

1 de I = [a, b] dans R. Pour toute fonction f continue

de J = F(I) dans E, on a : F F)( b adxxf = ∫FF b adtttf)."()).((.

Preuve

: Les fonctions y ®∫ F F)( y adxxf et y ®∫FF y adtttf)."()).(( sont définies et de classe C1 sur

[a, b], la première en tant que composée. Elles ont même dérivée f(F(y)).F"(y) et même valeur en a.

Remarque

: En pratique, ce théorème s"utilise dans les deux sens :

¾ dans le sens

∫FF b adtttf)."()).(( =∫ F F)( b adxxf , il suffit de poser x = F(t) et le changement de variable " se fait tout seul » dans la forme différentielle w = f(F(t)).F"(t).dt = f(x).dx.

Exemples :

∫FF b adttt).(").( = 2 )²()²(abF-F, ∫F Fb adttt.)()(" = ln |)(bF| - ln |)(aF| , ∫+F Fb adttt.1)²()(" = Arctan )(bF - Arctan)(aF, etc.

¾ dans le sens

b adxxf).( = ∫FF b adtttf)."()).((, où a = F-1(a) et b = F-1(b), il faut s"assurer que

F est C

1 et strictement monotone.

Exemples : calculer

∫-dxx.²1 , ∫+dxx.²1 et ∫-dxx.1². Proposition 2 : Soient u et v deux fonctions [a, b] ® C de classe C

1 ; on a :

b adxxvxu)."().( = []b axvxu)().( - ∫ b adxxvxu).()."(. Preuve : u.v est une fonction de classe C1 sur [a, b], et (u.v)" = u".v + u.v".

Applications : intégrer les exponentielles-polynômes, calculs récurrents d"intégrales, intégrer

certaines fonctions transcendantes, etc. 3

1.3. Intégrales généralisées.

Si I est un intervalle quelconque, mais non un segment, y a-t-il moyen de définir ∫Idxxf).( ?

Ainsi, en quel sens peut-on affirmer que

1 0 xdx = 2 , que∫

¥--dxex.2/² = p2, etc. ?

Définitions : 1) Soient I = [a, b[ un intervalle semi-ouvert à droite, f : [a, b[ ® R une fonction

continue. On dit que l"intégrale généralisée ∫[,[).(badxxf = ∫ b adxxf).( converge si ∫ c adxxf).( a une limite quand c ® b-0. Cette limite se note alors ∫[,[).(badxxf = limc®b-0 ∫ c adxxf).(.

2) Soient I = ]a, b] un intervalle semi-ouvert à gauche, f : ]a, b] ® R une fonction continue. On dit

que l"intégrale généralisée ∫],]).(badxxf = ∫ b adxxf).( converge si ∫ b cdxxf).( a une limite quand c ® a+0. Cette limite se note alors ∫],]).(badxxf = limc®a+0 ∫ b cdxxf).(.

3) Soient I = ]a, b[ un intervalle ouvert, f : ]a, b[ ® R une fonction continue. On dit que l"intégrale

généralisée ∫[,]).(badxxf = ∫ b adxxf).( converge si ∫ d cdxxf).( a une limite quand c ® a+0 et d ® b-0 indépendamment . Cette limite double se note alors ∫[,]).(badxxf = limc®a+0,d®b-0 ∫ d cdxxf).(. On dit que l"intégrale généralisée ∫Idxxf).( est divergente si ∫ c adxxf).(, resp.∫ b cdxxf).(, resp. d cdxxf).(, sont sans limite. On ne peut alors leur attribuer de valeur.

Ces définitions s"étendent au cas où f est continue par morceaux sur tout segment [c, d] Ì I.

Remarque importante : Le symbole

∫Idxxf).( désigne deux objets bien distincts : l"intégrale impropre ∫Idxxf).(, qui peut converger ou diverger, et sa valeur, en tant que limite, en cas de convergence. Il en de même dans la théorie des séries. Quand on écrit " =1

²1nn converge et vaut

6²p », le symbole ∑

=1

²1nn désigne d"abord la série de terme général 1/n2, puis sa valeur, c"est-à-dire la

valeur exacte de lim

N®+¥ ∑

=N nn1²1, car la série converge.

Critère de troncature : Si I = ]a, b[, et c est un point quelconque tel que a < c < b, alors

∫[,]).(badxxf converge ssi ∫],]).(cadxxf et ∫[,[).(bcdxxf convergent, et alors : ∫[,]).(badxxf = ∫],]).(cadxxf + ∫[,[).(bcdxxf. En pratique, quand l"intégrale est impropre en a et b, étudier séparément ∫],]).(cadxxf et ∫[,[).(bcdxxf, c étant un point quelconque tel que a < c < b.

Exemples importants :

1)

0.dxex converge, et vaut 1. En effet, ∫

-Axdxe0. = 1 - Ae-® 1 quand A ® +¥.

Plus généralement

0.dxeax converge ssi a > 0, et vaut alors 1/a.

4

Exercice : Montrer que ∫

¥--dxexa. converge ssi a > 0, et vaut alors 2/a. 2) +01²xdx converge et vaut p/2. En effet, ∫+ A xdx01² = Arctan A ® p/2 quand A ® +¥.

En déduire que

+1²xdx converge et vaut p. 3)

0dx et ∫

0.sindxx divergent.

En effet,

Adx0 = A ® +¥ avec A, et ∫

Adxx0.sin = 1 - cos A est sans limite quand A ® +¥. 4) +1a tdt converge ssi a > 1.

En effet t ®

at1 est continue positive sur [1, +¥[. ∫ A a tdt1 = ln A si a = 1, aA a 11 1 sinon.

Pour a > 1,

A a tdt1 tend vers 11-a quand A ® +¥ ; sinon, elle tend vers +¥. 5) 1 0 a tdt converge ssi a < 1.

En effet t ®

at1 est continue positive sur ]0, 1]. ∫ 1 eatdt = - ln e si a = 1, a a 1

11e sinon.

Pour a < 1 ,

1 eatdt tend vers a-11 quand e ® 0+ ; sinon, elle tend vers +¥.

6) Il résulte de 4) et 5) que l"intégrale

0 a tdt est toujours divergente. 7) 1

0.lndtt converge, et vaut -1.

En effet t ® ln t est continue sur ]0, 1], et

1.lnedtt = []1ln.ettt- = -1 - e.ln e + e ® 1 quand e ® 0+ .

8) 2/ 0.tan pdtt diverge. En effet t ® tan t est continue positive sur [0, p/2[ , et : xdtt0.tan= - ln( cos x ) ® +¥ quand x ® 2p . On conclut aisément.

1.3. Critères.

Tant que f se primitive éléméntairement et aisément, étudier la nature de ∫Idxxf).( est facile. C"était

le cas des exemples précédents. Les choses se compliquent lorsque f ne se primitive pas élémen-

tairement, ou lorsque sa primitive est trop longue à calculer. On aimerait alors disposer de critères

simples assurant la convergence ou la divergence de l"intégrale impropre.

La situation est analogue à la théorie des séries : lorsque la somme partielle se calcule élémen-

tairement (séries téléscopiques), on peut étudier directement la série : nature et calcul éventuel.

Quand ce n"est pas le cas, on a recours aux fameux critères de convergence.

Dans les énoncés suivants nous nous plaçons sur un intervalle semi-ouvert I = [a, b[. Le cas où I =

]a, b] est en tout point analogue, et nous n"énonçons pas les énoncés.

Proposition 1 : Linéarité.

Soient f et g deux fonctions continues sur [a, b[, l et m deux réels. Alors ∫[,[).(badxxf et ∫[,[).(badxxg convergent ⇒ ∫+[,[)).(.)(.(badxxgxfml converge 5

Remarque : Il en résulte que

∫[,[).(badxxf converge et ∫[,[).(badxxg diverge ⇒ ∫+[,[)).()((badxxgxf diverge.

En revanche, si

∫[,[).(badxxf et ∫[,[).(badxxg divergent, on ne peut rien dire de ∫+[,[)).()((badxxgxf.

Proposition 2 : Soient f une fonction continue positive sur [a, b[. Pour que l"intégrale ∫[,[).(badxxf converge, il faut et il suffit que la fonction F(x) = x adttf).( soit majorée sur [a, b[.

Proposition 3 : Critère majoration-minoration.

Soient f et g deux fonctions continues sur [a, b[ telles que "x 0 £ f(x) £ g(x). Alors

∫[,[).(badxxg converge ⇒ ∫[,[).(badxxf converge, ∫[,[).(badxxf diverge ⇒ ∫[,[).(badxxg diverge.

Cet énoncé reste vrai si l"on a 0 £ f(x) £ g(x) sur [c, b[.

Corollaire 1 : Critère de domination.

Soient f et g deux fonctions continues positives sur [a, b[ telles que f(x) = O(g(x)) au V(b-0). Alors ∫[,[).(badxxg converge ⇒ ∫[,[).(badxxf converge.

Corollaire 2 : Critère de l"équivalent.

Soient f et g deux fonctions continues positives sur [a, b[ telles que f(x) ~ g(x) au V(b-0). Alors ∫[,[).(badxxg converge Û ∫[,[).(badxxf converge.

Ce résultat subsiste si f et g sont semblables au V(b-0), i.e. si f(x) = O(g(x)) et g(x) = O(f(x)).

Remarque : Cela reste vrai si f et g sont équivalentes et de signe constant au V(b-0), mais pas si

elles sont équivalentes et changent sans cesse de signe.

Proposition 4 : Critère d"absolue convergence.

Si l"intégrale

∫[,[.)(badxxf converge, alors l"intégrale ∫[,[).(badxxf converge.

On dit alors que l"intégrale

∫[,[).(badxxf est absolument convergente, ou que la fonction f est intégrable. Remarque : l"absolue convergence implique la convergence, mais la réciproque est fausse, comme le montre l"exemple de l"intégrale

0.sindxxx, qui sera vu en exercice. La situation est analogue à

la théorie des séries : la série 11 )1(quotesdbs_dbs13.pdfusesText_19
[PDF] integrale sin(t)/t

[PDF] procédés théatraux

[PDF] tendinopathie genou traitement

[PDF] tendinite demi membraneux

[PDF] comment soigner une fabella

[PDF] fabella douloureuse

[PDF] tendinite poplité traitement

[PDF] mecanique de fluide resume

[PDF] mécanique des fluides bernoulli exercices corrigés

[PDF] fiche résumé mécanique des fluides

[PDF] mécanique des fluides cours pdf

[PDF] question ? choix multiple culture générale

[PDF] question ? choix multiple definition

[PDF] choix multiple orthographe

[PDF] questions avec reponses multiples synonyme