[PDF] Intégrales impropres





Previous PDF Next PDF





Épreuve de Mathématiques 3 Exercice 1 (PT 2013 C)

15 nov. 2013 t2 dt est absolument convergente. Conclusion. lim. T?+?. ? T. 1 sin t t dt existe : L'intégrale. ? +?. 0 sin t t dt converge.



Intégrales impropres

+?. 2. 1 t (ln t)2 dt converge alors notre intégrale initiale est aussi convergente. Mini-exercices.1. Étudier la convergence des intégrales suivantes : ? 



lintégrale de Dirichlet

12 mars 2020 2. t ?? sin(t)/t est continue sur ]0 +?[ et prolongeable par continuité en 0 (valeur 1). L'unique borne impropre est au voisinage.



Chapitre 2 - Intégrales généralisées (ou impropres)

t2 dt. 2.1 Définition et exemples d'intégrales impropres cos(t) dt est divergente puisque la fonction sin(x) ne converge pas lorsque x tend.





Intégrales généralisées

sin(1/t)e?1/tt?k dt. Exercice 2. Calcul fractions rationnelles. Prouver la convergence des intégrales suivantes puis les calculer : 1). ? +? t=0.



Math 256-Intégrales

f(t)dt. La plus intuitive est de voir l'intégrale comme limite d'une somme. ?2/2. 0. 1. ?. 1?x2 dx. On pose x = sin t en choisissant.



TD 1 Intégrales généralisées

16 sept. 2016 en 0+ à 1 en 1 (fausse impropreté). Les changements de variable x = sin. 2 ?



1 Intégrales généralisées

sin(t)dt = 1 ? cos(x) et la fonction cos n'a pas de limite `a l'infini. 2 Calcul pratique des intégrales généralisées. Proposition 2.1 On désigne par [a 



The sine and cosine integrals - Lancaster

Hence also the value of this integral is ? 2 for a0 we deduce Z 1 0 sinatcosat t dt= 1 2 Z 1 0 sin2at t dt= ? 4: (3) We will use this several times later Since sin(a+ b)t+ sin(a b)t= 2sinatcosbt we can also deduce Z 1 0 sinatcosbt t dt= ˆ ? 2 if a>b 0; 0 if b>a 0: (4) Integrating by parts and using (3) and the fact that sin2 t



The sine and cosine integrals - Lancaster

Integrals with Trigonometric Functions Z sinaxdx= 1 a cosax (63) Z sin2 axdx= x 2 sin2ax 4a (64) Z sinn axdx= 1 a cosax 2F 1 1 2; 1 n 2; 3 2;cos2 ax (65) Z sin3 axdx= 3cosax 4a + cos3ax 12a (66) Z cosaxdx=



Evaluation of the sine and cosine integrals - Lancaster

We shall consider the integrals in their various appropriate forms of sint t and cost t We start with the “complete sine integral”: THEOREM 1 We have Z ? 0 sint t dt = ? 2 (1) Note ?rst that there is no problem of convergence at 0 because sint t ? 1 as t ? 0 A very quick and neat proof of (1) (to be seen for example in [Lo



FT SECOND FUNDAMENTAL THEOREM - MIT Mathematics

of variable rule (see (7) p PI 2 in these notes) You get successively t = au dt = adu dt t = adu au = du u We have to change the limits on the integral also: t = a and t = ab correspond respectively to u = 1u = b Thus the rule for changing variable in a de?nite integral gives Z ab a dt t = Z b 1 du u = L(b)



42 Line Integrals - Cornell University

and Cis the curve x= cost;y= sint;z= t0 t 2 4 2 LINE INTEGRALS 3 MATH 294 SPRING 1989 FINAL # 4 294SP89FQ4 tex 4 2 15 Evaluate the path integral I C

What are the integrals of Sint=T and cost=ton intervals?

In these notes, we consider the integrals of sint=tand cost=ton intervals like (0;1),(0; x) and (x;1). Most of the material appeared in [Jam1]. Companion notes [Jam2], [Jam3]deal with integrals ofeit=tpand, more generally,f(t)eit. THEOREM 1. We have Note rst that there is no problem of convergence at 0, becausesint!1 ast!0.

What is the definite integral of from to?

The definite integral of from to , denoted , is defined to be the signed area between and the axis, from to . Both types of integrals are tied together by the fundamental theorem of calculus. This states that if is continuous on and is its continuous indefinite integral, then . This means .

How do you express S(x)2 as an integral?

, we can expressS(x)2as an integral: in which we used (32) and limx!1[xS(x)2] = 0 (recalljS(x)j 2=x). The integral ofC(x)2is similar, with the additional remark that limx!0+[xC(x)2] = 0. We nish with another pair of integrals that require a little more work.

Are the integrals in 32 and 33 double integrals?

Of course, the integrals in (32) and (33) are really double integrals. Formal reversal ofthe double integrals duly delivers the stated values. However, the conditions for reversal ofimproper integrals are not satised, and one should really consider the integral on [0; R] ofRRsintdt=S(x) S(R).

Intégrales impropres

1. Définitions et premières propriétésLa plupart des intégrales que vous rencontrerez ne sont pas des aires de domaines bornés du plan. Nous allons

apprendre ici à calculer les intégrales de domaines non bornés, soit parce que l"intervalle d"intégration est infini

(allant jusqu"à+1ou1), soit parce que la fonction à intégrer tend vers l"infini aux bornes de l"intervalle. Pour

assimiler ce chapitre, vous avez juste besoin d"une petite révision des techniques de calcul des primitives, et d"une

bonne compréhension de la notion de limite.

1.1. Points incertains

Considérons par exemple la fonctionfqui àt2]1,0[[]0,+1[associef(t) =sinjtjjtj32. Comment donner un sens à

l"intégrale defsurR?tsinjtjjtj3=2•

On commence d"abord par identifier lespoints incertains, soit+1, soit1d"une part, et d"autre part le ou les

points au voisinage desquels la fonction n"est pas bornée (t=0 dans notre exemple).

On découpe ensuite chaque intervalle d"intégration en autant d"intervalles qu"il faut pour que chacun d"eux ne

contienne qu"un seul point incertain, placé à l"une des deux bornes.

Nous souhaitons une définition qui respecte la relation de Chasles. Ainsi l"intégrale sur l"intervalle complet est la

somme des intégrales sur les intervalles du découpage.

Dans l"exemple de la fonctionf(t) =sinjtjjtj32ci-dessus, il faut découper les deux intervalles de définition]1,0[et

]0,+1[en 4 sous-intervalles : 2 pour isoler1et+1, et 2 autres pour le point incertain 0. INTÉGRALES IMPROPRES1. DÉFINITIONS ET PREMIÈRES PROPRIÉTÉS2

On pourra écrire pour cet exemple :Z

+1 1 f(t)dt=Z 1 1 f(t)dt+Z 0

1f(t)dt+Z

1 0 f(t)dt+Z +1 1 f(t)dt.

•Le seul but est d"isoler les difficultés : les choix de1et1comme points de découpage sont arbitraires (par

exemple3 et 10 auraient convenu tout aussi bien).

1.2. Convergence/divergence

Par ce découpage, et par changement de variablet7! t, on se ramène à des intégrales de deux types.

1.

Intégrale sur [a,+1[.

2. Intégrale sur ]a,b], avec la fonction non bornée ena.

Nous devons donc définir une intégrale, appeléeintégrale impropre, dans ces deux cas.Définition 1.1.

Soitfune fonction continue sur[a,+1[. On dit que l"intégraleR+1 af(t)dtconvergesi la limite, lorsquextend vers+1, de la primitiveRx af(t)dtexiste et est finie. Si c"est le cas, on pose : Z +1 a f(t)dt=limx!+1Z x a f(t)dt. (1) Dans le cas contraire, on dit que l"intégralediverge. 2. Soitfune fonction continue sur]a,b]. On dit que l"intégraleRb af(t)dtconvergesi la limite à droite, lorsque xtend versa, deRb xf(t)dtexiste et est finie. Si c"est le cas, on pose : Z b a f(t)dt=limx!a+Z b x f(t)dt. (2) Dans le cas contraire, on dit que l"intégralediverge.Remarque.

•Convergence équivaut donc à limite finie. Divergence signifie soit qu"il n"y a pas de limite, soit que la

limite est infinie.

Observons que la deuxième définition est cohérente avec l"intégrale d"une fonction qui serait continue sur[a,b]

tout entier (au lieu de]a,b]). On sait que la primitiveRb xf(t)dtest une fonction continue. Par conséquent, l"intégrale usuelleRb af(t)dtest aussi la limite deRb xf(t)dt(lorsquex!a+). Dans ce cas, les deux intégrales coïncident.

1.3. Exemples

Quand on peut calculer une primitiveF(x)de la fonction à intégrer (par exempleF(x) =Rx af(t)dt), l"étude de la convergence se ramène à un calcul de limite deF(x). Voici plusieurs exemples.

Exemple 1.

L"intégraleZ+1

011+t2dtconverge.

En effet,

Zx

011+t2dt="

arctant— x

0=arctanxet limx!+1arctanx=2

On pourra écrire :

Z+1

011+t2dt="

arctant— +1 0=2

à condition de se souvenir que

arctant— +1

0désigne une limite en+1.

INTÉGRALES IMPROPRES1. DÉFINITIONS ET PREMIÈRES PROPRIÉTÉS31

1+t2Cela prouve que le domaine sous la courbe n"est pas borné, mais cependant son aire est finie!

Exemple 2.

Par contre, l"intégraleZ+1

011+tdtdiverge.

En effet,

Zx

011+tdt="

ln(1+t)— x

0=ln(1+x)et limx!+1ln(1+x) = +1.

Exemple 3.

L"intégraleZ1

0 lntdtconverge.

En effet,

Z1 x lntdt=" tlntt— 1 x=xxlnx1 et limx!0+(xxlnx1) =1 .

On pourra écrire :

Z1 0 lntdt=" tlntt— 1 0=1 .

Exemple 4.

Par contre, l"intégraleZ1

01t dtdiverge.

En effet,

Z1 x1t dt=" lnt— 1 x=lnxet limx!0+lnx= +1.

1.4. Relation de ChaslesLorsqu"elle converge, cette nouvelle intégrale vérifie les mêmes propriétés que l"intégrale de Riemann usuelle, à

commencer par la relation de Chasles :Proposition 1(Relation de Chasles). Soitf:[a,+1[!Rune fonction continue et soita02[a,+1[. Alors les intégrales impropresR+1 af(t)dtetR+1 a

0f(t)dt sont de même nature. Si elles convergent, alorsZ

+1 a f(t)dt=Z a0 a f(t)dt+Z +1 a

0f(t)dt.

" Être de même nature » signifie que les deux intégrales sont convergentes en même temps ou bien divergentes en

même temps.

Le relation de Chasles implique donc que la convergence ne dépend pas du comportement de la fonction sur des

intervalles bornés, mais seulement de son comportement au voisinage de+1. INTÉGRALES IMPROPRES1. DÉFINITIONS ET PREMIÈRES PROPRIÉTÉS4

Démonstration.La preuve découle de la relation de Chasles pour les intégrales usuelles, aveca6a06x:

Z x a f(t)dt=Z a0 a f(t)dt+Z x a

0f(t)dt.

Puis on passe à la limite (lorsquex!+1).Bien sûr, si on est dans le cas d"une fonction continuef:]a,b]!Ravecb02]a,b], alors on a un résultat similaire,

et en cas de convergence :Zb a f(t)dt=Z b0 a f(t)dt+Z b b

0f(t)dt.

Dans ce cas la convergence de l"intégrale ne dépend pas deb, mais seulement du comportement defau voisinage de

a.

1.5. Linéarité

Le résultat suivant est une conséquence immédiate de la linéarité des intégrales usuelles et des limites.Proposition 2(Linéarité de l"intégrale).

Soientfetgdeux fonctions continues sur[a,+1[, et,deux réels. Si les intégralesR+1 af(t)dtetR+1 ag(t)dt convergent, alorsR+1 af(t)+g(t)dt converge et Z +1 a f(t)+g(t)dt=Z +1 a f(t)dt+Z +1 a

g(t)dt.Les mêmes relations sont valables pour les fonctions d"un intervalle]a,b], non bornées ena.

Remarque : la réciprocité dans la linéarité est fausse, il est possible de trouver deux fonctionsf,gtelles queR+1

af+g converge, sans queR+1 af, niR+1 agconvergent. Trouvez un tel exemple!

1.6. PositivitéProposition 3(Positivité de l"intégrale).

Soient f,g:[a,+1[!Rdes fonctions continues, ayant une intégrale convergente.Si f6g alorsZ +1 a f(t)dt6Z +1 a g(t)dt.En particulier, l"intégrale (convergente) d"une fonction positive est positive :

Sif>0 alorsZ

+1 a f(t)dt>0

Une nouvelle fois, les mêmes relations sont valables pour les fonctions définies sur un intervalle]a,b], non bornées

ena, en prenant bien soin d"avoiraRemarque.

Si l"on ne souhaite pas distinguer les deux types d"intégrales impropres sur un intervalle[a,+1[(ou] 1,b])

d"une part et]a,b](ou[a,b[) d"autre part, alors il est pratique de rajouter les deux extrémités à la droite numérique :R=R[f1,+1g

Ainsi l"intervalleI= [a,b[aveca2Retb2Rdésigne l"intervalle infini[a,+1[(sib= +1) ou l"intervalle fini

[a,b[(sib<+1). De même pour un intervalleI0=]a,b]aveca=1oua2R. INTÉGRALES IMPROPRES1. DÉFINITIONS ET PREMIÈRES PROPRIÉTÉS5

1.7. Critère de CauchyOn termine par une caractérisation de la convergence un peu plus délicate (qui peut être passée lors d"une première

lecture). Rappelons d"abord le critère de Cauchy pour les limites. Rappel: Soitf:[a,+1[!R. Alors limx!+1f(x)existe et est finie si et seulement si

8 >09M>au,v>M=)f(u)f(v)< .Théorème 1(Critère de Cauchy).

Soit f:[a,+1[!Rune fonction continue. L"intégrale impropreR+1 af(t)dt converge si et seulement si

8 >09M>a

u,v>M=)Z v u f(t)dt< .Démonstration. Il suffit d"appliquer le rappel ci-dessus à la fonctionF(x) =Rx af(t)dtet en notant queF(u)F(v)=Rv uf(t)dt.1.8. Cas de deux points incertains

On peut considérer les intégrales doublement impropres, c"est-à-dire lorsque les deux extrémités de l"intervalle de

définition sont des points incertains. Il s"agit juste de se ramener à deux intégrales ayant chacune un seul point

incertain.Définition 2. Soienta,b2Raveca