[PDF] [PDF] Nombres complexes - Exo7 - Exercices de mathématiques





Previous PDF Next PDF



Nombres complexes

[000003]. Exercice 3. Calculer le module et l'argument de u = /. 6-i Soient z1 z2



Feuille 5 : Nombres complexes (correction)

z =4+5i a) z = (?2+2i)+(5+3i)



NOMBRES COMPLEXES (Partie 2)

a2 + b2 = z. Méthode : Calculer le module d'un nombre complexe. Vidéo https://youtu.be/Hu0jjS5O2u4. Calculer : a) 3? 2i b) ?3i c) 2 ?i 



NOMBRES COMPLEXES

Déterminer l'ensemble des points M d'affixe z tels que



NOMBRES COMPLEXES (Partie 1)

3+ 4i ; ?2 ? i ; i. 3 sont des nombres complexes. Vocabulaire : - L'écriture a + ib d'un nombre complexe z est appelée la forme algébrique de z.



ÉTS

À ce moment l'addition et la soustraction de nombres complexes peut être vue comme l'addition et la soustraction de vecteurs. Exemple D.1. Soit z. 1. = 2 + 3i 



Forme trigonométrique dun nombre complexe. Applications Niveau

I. Forme algébrique d'un nombre complexe Exemple : z = 3 – 2i ? 3 est la partie réelle et -2 est la partie imaginaire. Remarques :.



Nombres complexes 1 Forme cartésienne forme polaire

3?i. 2 . Exercice 5 Calculer le module et l'argument de u = ?. 6?i Exercice 15 Résoudre dans C l'équation z3 = 1. 4. (?1 + i) et montrer qu'une ...



Exercices de mathématiques - Exo7

2z2 -(7+3i)z+(2+4i) = 0. Correction ?. [005120]. Exercice 3 **IT Une construction du pentagone régulier à la règle et 



NOMBRES COMPLEXES

Exemple : soient les nombres complexes z1 = 6?i et z2 =1+ 3i . Déterminer le réel a pour que le polynôme z3 ? az2 + 3az + 37 soit divisible par z +1.



[PDF] NOMBRES COMPLEXES

Tous les nombres positifs ont une racine carrée par exemple 9 a pour racine 3 et –3 et 2 a pour racine 2 et - 2 Par contre aucun réel négatif n'a de racine 



[PDF] Nombres complexes - Exo7 - Exercices de mathématiques

Résoudre z3 = 1 et montrer que les racines s'écrivent 1 j j2 Calculer 1+ j+ j2 et en déduire les racines de 1+z+z2 = 0 2 Résoudre zn = 1 et montrer que 



[PDF] Les complexes - Exo7 - Exercices de mathématiques

On pose z = e2i?/5 puis a = z + z4 et b = z2 + z3 Déterminer une équation du second degré dont les solutions sont a et b et en déduire les valeurs exactes 



[PDF] 1 Corps des nombres complexes

Définition 1 1 3 (Puissance n-i`eme) Soit z un nombre complexe on convient que z0 = 1 et que z1 = z Soit n un entier naturel non nul on désigne par zn 



[PDF] TD no3 Nombres complexes

Exercice 5 Pour tout complexe z on pose P(z) = z3 +(-2+3i)z2 +(13-i)z+(-6-10i) Écrire sous forme algébrique les nombres com- plexes P(i) P(3) et P(1 + 



[PDF] NOMBRES COMPLEXES

Comme le montre la figure ci-contre le nombre complexe z est cette fois l'affixe d'un point du troisième quadrant Sachant que a = ?3 et b = ?2 le module 



[PDF] NOMBRES COMPLEXES (Partie 2) - maths et tiques

Ecrire le nombre complexe z = 3 + i sous sa forme trigonométrique - On commence par calculer le module de z : z = 3+1 = 2 - En calculant z



[PDF] Pascal Lainé 1 NOMBRES COMPLEXES Exercice 1

6 3 Quotient du nombre complexe de modulo 2 et d'argument 3 par le nombre complexe de module 3 et d'argument ? 5 6



[PDF] 3 Les nombres complexes

Représenter dans le plan complexe les nombres complexes suivantes : (a) z1 =1+2i (b) Le nombre complexe z2 de module 2 et d'argument ? 4 (c) z3 = 4(cos(



[PDF] Les nombres complexes

Déterminer le module et l'argument des nombres complexes : z1 = 1 2 ( ? 6 ? i ? 2) z2 = 1 ? i z3 = z1 z2 · En déduire cos( ? 12 ) et sin( ? 12 ) 

:
Exo7

Nombres complexes

1 Forme cartésienne, forme polaire

Exercice 1Mettre sous la formea+ib(a;b2R) les nombres :

3+6i34i;1+i2i

2 +3+6i34i;2+5i1i+25i1+i: Écrire sous la formea+ibles nombres complexes suivants : 1.

Nombre de module 2 et d"ar gumentp=3.

2.

Nombre de module 3 et d"ar gumentp=8.

Calculer le module et l"argument deu=p6ip2

2 etv=1i. En déduire le module et l"argument dew=uv Déterminer le module et l"argument des nombres complexes : e eiaeteiq+e2iq: Exercice 5Calculer les racines carrées de 1;i;3+4i;86i;et 7+24i. 1.

Calculer les racines carrées de

1+ip2 . En déduire les valeurs de cos(p=8)et sin(p=8). 2.

Calculer les v aleursde cos (p=12)et sin(p=12).

1

Résoudre dansCles équations suivantes :

z

2+z+1=0 ;z2(1+2i)z+i1=0 ;z2p3zi=0 ;

z

2(514i)z2(5i+12) =0 ;z2(3+4i)z1+5i=0 ; 4z22z+1=0 ;

z

4+10z2+169=0 ;z4+2z2+4=0:

Exercice 8Calculer la sommeSn=1+z+z2++zn.

1.

Résoudre z3=1 et montrer que les racines s"écrivent 1,j,j2. Calculer 1+j+j2et en déduire les racines

de 1+z+z2=0. 2.

Résoudre zn=1 et montrer que les racines s"écrivent 1;e;:::;en1. En déduire les racines de 1+z+z2+

+zn1=0. Calculer, pourp2N, 1+ep+e2p++e(n1)p.

Trouver les racines cubiques de 22iet de 11+2i.

1. Soient z1,z2,z3trois nombres complexes distincts ayant le même cube.

Exprimerz2etz3en fonction dez1.

2. Donner ,sous forme polaire, les solutions dans Cde : z

6+(7i)z388i=0:

(Indication : poserZ=z3; calculer(9+i)2)

4 Géométrie

Exercice 12Déterminer l"ensemble des nombres complexesztels que : 1. z3z5 =1; 2. z3z5 =p2 2 Montrer que pouru;v2C, on aju+vj2+juvj2=2(juj2+jvj2):Donner une interprétation géométrique.

Soit(A0;A1;A2;A3;A4)un pentagone régulier. On noteOson centre et on choisit un repère orthonormé

(O;!u;!v)avec!u=!OA0, qui nous permet d"identifier le plan avec l"ensemble des nombres complexesC.A0 A 3 A 4A 1 A 2 O

1i1.Donner lesaffixesw0;:::;w4despointsA0;:::;A4. Montrerquewk=w1kpourk2f0;1;2;3;4g. Montrer

que 1+w1+w21+w31+w41=0. 2.

En déduire que cos (2p5

)est l"une des solutions de l"équation 4z2+2z1=0. En déduire la valeur de cos(2p5 3. On considère le point Bd"affixe1. Calculer la longueurBA2en fonction de sinp10 puis dep5 (on remarquera que sin p10 =cos2p5 4.

On cons idèrele point Id"affixei2

, le cercleCde centreIde rayon12 et enfin le pointJd"intersection de Cavec la demi-droite[BI). Calculer la longueurBIpuis la longueurBJ.

5.Application:Dessiner un pentagone régulier à la règle et au compas. Expliquer.

5 Trigonométrie

Exercice 15Soitzun nombre complexe de moduler, d"argumentq, et soitzson conjugué. Calculer(z+z)(z2+z

2):::(zn+z

n)en fonction deretq. En utilisant les nombres complexes, calculer cos5qet sin5qen fonction de cosqet sinq.

Exercice 17SoitZ[i] =fa+ib;a;b2Zg.

1. Montrer que si aetbsont dansZ[i]alorsa+betable sont aussi. 2.

T rouverles élements in versiblesde Z[i], c"est-à-dire les élémentsa2Z[i]tels qu"il existeb2Z[i]avec

ab=1. 3. Vérifier que quel que soit w2Cil existea2Z[i]tel quejwaj<1. 4.

Montrer qu"il e xistesur Z[i]une division euclidienne, c"est-à-dire que, quels que soientaetbdansZ[i]

il existeqetrdansZ[i]vérifiant : a=bq+ravecjrj2¯z2¯z2=z1¯z2jz2j2.Indication pourl"exer cice2 NIl faut bien connaître ses formules trigonométriques. En particulier si l"on connait cos(2q)ou sin(2q)on sait

calculer cosqet sinq.Indication pourl"exer cice3 NPassez à la forme trigonométrique. Souvenez-vous des formules sur les produits de puissances :

e

iaeib=ei(a+b)eteia=eib=ei(ab):Indication pourl"exer cice4 NPour calculer un somme du typeeiu+eivil est souvent utile de factoriser pareiu+v2

.Indication pourl"exer cice5 NPourz=a+ibon cherchew=a+ibtel que(a+ib)2=a+ib. Développez et indentifiez. Utilisez aussi que

jwj2=jzj.Indication pourl"exer cice6 NIl s"agit de calculer les racines carrées de 1+ip2 =eip4

de deux façons différentes.Indication pourl"exer cice7 NPour les équation du typeaz4+bz2+c=0, poserZ=z2.Indication pourl"exer cice8 NCalculer(1z)Sn.Indication pourl"exer cice12 NLe premier ensemble est une droite le second est un cercle.

Indication pour

l"exer cice

13 NPour l"interprétation géométrique cherchez le parallélogramme.

Indication pour

l"exer cice

15 NUtiliser la formule d"Euler pour faire apparaître des cosinus.

Indication pour

l"exer cice

16 NAppliquer deux fois la formule de Moivre en remarquantei5q= (eiq)5.5

Correction del"exer cice1 NRemarquons d"abord que pourz2C,zz=jzj2est un nombre réel, ce qui fait qu"en multipliant le dénominateur

par son conjugué nous obtenons un nombre réel. =35 +65
i:

Calculons

1+i2i=(1+i)(2+i)5

=1+3i5 et 1+i2i 2 =1+3i5 2 =8+6i25 =825 +625
i: Donc 1+i2i 2 +3+6i34i=825 +625
i35 +65
i=2325 +3625
i:

Soitz=2+5i1i. Calculonsz+z, nous savons déjà que c"est un nombre réel, plus précisément :z=32

+72
iet doncz+z=3.Correction del"exer cice2 N1.z1=2eip3 =2(cosp3 +isinp3 ) =2(12 +ip3 2 ) =1+ip3.

2.z2=3eip8

=3cosp8

3isinp8

=3p2+p2 2

3ip2p2

2 Il nous reste à expliquer comment nous avons calculé cos p8 et sinp8 : posonsq=p8 , alors 2q=p4 et donc cos(2q)=p2 2 =sin(2q). Mais cos(2q)=2cos2q1. Donc cos2q=cos(2q)+12 =14 (2+p2). Et ensuite sin

2q=1cos2q=14

(2p2). Comme 06q=p8 6p2 , cosqet sinqsont des nombres positifs. Donc cos p8 =12 q2+p2;sinp8 =12 q2p2:Correction del"exer cice3 NNous avons u=p6p2i2 =p2 p3 2 i2 =p2 cosp6 isinp6 =p2eip6 puis v=1i=p2eip4

Il ne reste plus qu"à calculer le quotient :

uv =p2eip6p2eip4 =eip6 +ip4 =eip12 :Correction del"exer cice4 ND"après la formule de Moivre poureianous avons : e eia=ecosa+isina=ecosaeisina: Orecosa>0 donc l"écriture précédente est bien de la forme "module-argument". 6

De façon générale pour calculer un somme du typeeiu+eivil est souvent utile de factoriser pareiu+v2

. En effet e iu+eiv=eiu+v2 eiuv2 +eiuv2 =eiu+v2

2cosuv2

=2cosuv2 eiu+v2 Ce qui est proche de l"écriture en coordonées polaires.

Pour le cas qui nous concerne :

z=eiq+e2iq=e3iq2 h eiq2 +eiq2 i =2cosq2 e3iq2 Attention le module dans une décomposion en forme polaire doit être positif ! Donc si cos q2 >0 alors 2cosq2 est le module dezet 3q=2 est son argument ; par contre si cosq2 <0 le module est 2jcosq2 jet l"argument

3q=2+p(le+pcompense le changement de signe careip=1).Correction del"exer cice5 NRacines carrées.Soitz=a+ibun nombre complexe aveca;b2R; nous cherchons les complexesw2Ctels

quew2=z. Écrivonsw=a+ib. Nous raisonnons par équivalence : w

2=z,(a+ib)2=a+ib

,a2b2+2iab=a+ib Soit en identifiant les parties réelles entre elles ainsi que les parties imaginaires : a2b2=a 2ab=b Sans changer l"équivalence nous rajoutons la conditionjwj2=jzj. 8 :a

2+b2=pa

2+b2 a 2b2=a 2ab=b Par somme et différence des deux premières lignes : 8 :a

2=a+pa

2+b22 b

2=a+pa

2+b22 2ab=b ,8 >:a=qa+pa 2+b22 b=qa+pa 2+b22 abest du même signe queb Cela donne deux couples(a;b)de solutions et donc deux racines carrées (opposées)w=a+ibdez. 7 En pratique on répète facilement ce raisonnement, par exemple pourz=86i, w

2=z,(a+ib)2=86i

,a2b2+2iab=86i a2b2=8 2ab=6 ,8 :a

2+b2=p8

2+(6)2=10 le module dez

a 2b2=8 2ab=6 ,8 :2a2=18 b 2=1 2ab=6 ,8 :a=p9=3 b=1 aetbde signes opposés ,8 :a=3 etb=1 ou a=3 etb= +1

Les racines dez=86isont doncw1=3ietw2=w1=3+i.

Pour les autres :

Les racines carrées de 1 sont : +1 et1.

Les racines carrées de isont :p2

2quotesdbs_dbs44.pdfusesText_44
[PDF] pensez vous que indicatif ou subjonctif

[PDF] monument aux morts de saint martin d estréaux

[PDF] pensez-vous qu'il serait possible

[PDF] quand utiliser le subjonctif

[PDF] pensez vous qu'il faut ou qu'il faille

[PDF] invitation au voyage baudelaire

[PDF] construire l histogramme des fréquences

[PDF] histogramme des effectifs

[PDF] histogramme de fréquence excel

[PDF] polygone de fréquence cumulée

[PDF] comment faire un histogramme sur excel 2010

[PDF] exemple discussion français

[PDF] représentation graphique variable quantitative

[PDF] principe d'autonomie en ethique

[PDF] autonomie du patient hospitalisé