[PDF] NOMBRES COMPLEXES (Partie 1) 3+ 4i ; ?2 ? i ; i.





Previous PDF Next PDF



Nombres complexes

[000003]. Exercice 3. Calculer le module et l'argument de u = /. 6-i Soient z1 z2



Feuille 5 : Nombres complexes (correction)

z =4+5i a) z = (?2+2i)+(5+3i)



NOMBRES COMPLEXES (Partie 2)

a2 + b2 = z. Méthode : Calculer le module d'un nombre complexe. Vidéo https://youtu.be/Hu0jjS5O2u4. Calculer : a) 3? 2i b) ?3i c) 2 ?i 



NOMBRES COMPLEXES

Déterminer l'ensemble des points M d'affixe z tels que



NOMBRES COMPLEXES (Partie 1)

3+ 4i ; ?2 ? i ; i. 3 sont des nombres complexes. Vocabulaire : - L'écriture a + ib d'un nombre complexe z est appelée la forme algébrique de z.



ÉTS

À ce moment l'addition et la soustraction de nombres complexes peut être vue comme l'addition et la soustraction de vecteurs. Exemple D.1. Soit z. 1. = 2 + 3i 



Forme trigonométrique dun nombre complexe. Applications Niveau

I. Forme algébrique d'un nombre complexe Exemple : z = 3 – 2i ? 3 est la partie réelle et -2 est la partie imaginaire. Remarques :.



Nombres complexes 1 Forme cartésienne forme polaire

3?i. 2 . Exercice 5 Calculer le module et l'argument de u = ?. 6?i Exercice 15 Résoudre dans C l'équation z3 = 1. 4. (?1 + i) et montrer qu'une ...



Exercices de mathématiques - Exo7

2z2 -(7+3i)z+(2+4i) = 0. Correction ?. [005120]. Exercice 3 **IT Une construction du pentagone régulier à la règle et 



NOMBRES COMPLEXES

Exemple : soient les nombres complexes z1 = 6?i et z2 =1+ 3i . Déterminer le réel a pour que le polynôme z3 ? az2 + 3az + 37 soit divisible par z +1.



[PDF] NOMBRES COMPLEXES

Tous les nombres positifs ont une racine carrée par exemple 9 a pour racine 3 et –3 et 2 a pour racine 2 et - 2 Par contre aucun réel négatif n'a de racine 



[PDF] Nombres complexes - Exo7 - Exercices de mathématiques

Résoudre z3 = 1 et montrer que les racines s'écrivent 1 j j2 Calculer 1+ j+ j2 et en déduire les racines de 1+z+z2 = 0 2 Résoudre zn = 1 et montrer que 



[PDF] Les complexes - Exo7 - Exercices de mathématiques

On pose z = e2i?/5 puis a = z + z4 et b = z2 + z3 Déterminer une équation du second degré dont les solutions sont a et b et en déduire les valeurs exactes 



[PDF] 1 Corps des nombres complexes

Définition 1 1 3 (Puissance n-i`eme) Soit z un nombre complexe on convient que z0 = 1 et que z1 = z Soit n un entier naturel non nul on désigne par zn 



[PDF] TD no3 Nombres complexes

Exercice 5 Pour tout complexe z on pose P(z) = z3 +(-2+3i)z2 +(13-i)z+(-6-10i) Écrire sous forme algébrique les nombres com- plexes P(i) P(3) et P(1 + 



[PDF] NOMBRES COMPLEXES

Comme le montre la figure ci-contre le nombre complexe z est cette fois l'affixe d'un point du troisième quadrant Sachant que a = ?3 et b = ?2 le module 



[PDF] NOMBRES COMPLEXES (Partie 2) - maths et tiques

Ecrire le nombre complexe z = 3 + i sous sa forme trigonométrique - On commence par calculer le module de z : z = 3+1 = 2 - En calculant z



[PDF] Pascal Lainé 1 NOMBRES COMPLEXES Exercice 1

6 3 Quotient du nombre complexe de modulo 2 et d'argument 3 par le nombre complexe de module 3 et d'argument ? 5 6



[PDF] 3 Les nombres complexes

Représenter dans le plan complexe les nombres complexes suivantes : (a) z1 =1+2i (b) Le nombre complexe z2 de module 2 et d'argument ? 4 (c) z3 = 4(cos(



[PDF] Les nombres complexes

Déterminer le module et l'argument des nombres complexes : z1 = 1 2 ( ? 6 ? i ? 2) z2 = 1 ? i z3 = z1 z2 · En déduire cos( ? 12 ) et sin( ? 12 ) 

:

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr1NOMBRES COMPLEXES (Partie 1) Les nombres complexes prennent naissance au XVIème siècle lorsqu'un italien Gerolamo Cardano (1501 ; 1576), ci-contre, au nom francisé de Jérôme Cardan, introduit

-15

pour résoudre des équations du troisième degré. En 1572, un autre italien, Rafaele Bombelli (1526 ; 1573) publie "Algebra, parte maggiore dell'aritmetica, divisa in tre libri" dans lequel il présente des nombres de la forme

a+b-1

et poursuit les travaux de Cardan sur la recherche de solutions non réelles pour des équations du troisième degré. A cette époque, on sait manipuler les racines carrées d'entiers négatifs mais on ne les considère pas comme des nombres. Lorsqu'une solution d'équation possède une telle racine, elle est dite imaginaire. La notation i apparaît en 1777 siècle avec Leonhard Euler (1707 ; 1783) qui développe la théorie des nombres complexes sans encore les considérer comme de " vrais » nombres. Il les qualifie de nombres impossibles ou de nombres imaginaires. Au XIXe siècle, Gauss puis Hamilton posent les structures de l'ensemble des nombres complexes. Les nombres sans partie imaginaire sont un cas particulier de ces nouveaux nombres. On les qualifie de " réel » car proche de la vie. Les complexes sont encore considérés comme une création de l'esprit. I. L'ensemble

1) Définition Définition : Il existe un ensemble de nombres, noté

, appelé ensemble des nombres complexes qui possède les propriétés suivantes : - contient . - Dans

, on définit une addition et une multiplication qui suivent les mêmes règles de calcul que dans

. - Il existe dans un nombre i tel que i 2 =-1 . - Tout élément z de s'écrit de manière unique sous la forme z=a+ib avec a et b réels. Exemples : 3+4i -2-i i 3 sont des nombres complexes. Vocabulaire : - L'écriture a+ib d'un nombre complexe z est appelée la forme algébrique de z.

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr2- Le nombre a s'appelle la partie réelle et la nombre b s'appelle la partie imaginaire. On note

Re(z)=a

et

Im(z)=b

. Remarques : - Si b=0 alors z est un nombre réel. - Si a=0

alors z est un nombre imaginaire pur. Méthode : Effectuer des calculs sur les nombres complexes Vidéo https://youtu.be/-aaSfL2fhTY Vidéo https://youtu.be/1KQIUqzVGqQ Calculer et exprimer le résultat sous la forme algébrique.

z 1 =3-5i-3i-4 z 2 =3-2i -1+5i z 3 =2-3i 2 z 4 =2i 13 z 5 1 4-2i z 6 1+i 2-i z 1 =3-5i-3i-4 =3-5i-3i+4 =7-8i z 2 =3-2i -1+5i =-3+15i+2i-10i 2 =-3+15i+2i+10 =7+17i z 3 =2-3i 2 =4-12i+9i 2 =4-12i-9 =-5-12i z 4 =2i 13 =2 13 i 13 =8192×i 2 6 ×i =8192×-1 6 ×i =8192i z 5 1 4-2i 4+2i 4-2i 4+2i 4+2i 16-4i 2 4+2i 16+4 1 5 1 10 i z 6 1+i 2-i 1+i 2+i 2-i 2+i 1+i 2+i 4+1 1 5

2+i+2i-1

1 5 3 5 i

Propriétés : a) Deux nombres complexes sont égaux, si et seulement si, ils ont la même partie réelle et la même partie imaginaire. b) Un nombre complexe est nul, si et seulement si, sa partie réelle et sa partie imaginaire sont nulles. Démonstration : Conséquence immédiate de l'unicité de la forme algébrique.

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr3Exemple d'application : Déterminons le nombre complexe z vérifiant

2z-5=4i+z

. On a donc :

2z-z=5+4i

z=5+4i

2) Représentation dans le plan complexe Dans tout le chapitre, on munit le plan d'un repère orthonormé direct

O;u ;v . Définitions : a et b sont deux nombres réels. - A tout nombre complexe z=a+ib , on associe le point M de coordonnées a;b et le vecteur w de coordonnées a;b . - A tout point M a;b et à tout vecteur w a;b , on associe le nombre complexe z=a+ib appelé affixe du point M et affixe du vecteur w . On note M(z) et w

(z). Exemple : Vidéo https://youtu.be/D_yFqcCy3iE Le point M(3 ; 2) a pour affixe le nombre complexe

z=3+2i . De même, le vecteur w a pour affixe z=3+2i . Propriétés : M( z M ) et N( z N ) sont deux points du plan. u (z) et v (z') sont deux vecteurs du plan. a) Le vecteur MN a pour affixe z N -z M . b) Le vecteur u +v a pour affixe z+z' . c) Le vecteur ku , k réel, a pour affixe kz . d) Le milieu I du segment [MN] a pour affixe z I z M +z N 2 YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr4Démonstration : a) On pose : M(x M ;y M et N(x N ;y N . Le vecteur MN a pour coordonnées x N -x M ;y N -y M donc son affixe est égal à x N -x M +iy N -y M =x N +iy N -x M +iy M =z N -z M

. b) et c) : Démonstrations analogues en passant par les coordonnées des vecteurs. Autres exemples : II. Conjugué d'un nombre complexe Définition : Soit un nombre complexe

z=a+ib . On appelle nombre complexe conjugué de z, le nombre, noté z , égal à a-ib . Exemples : - z=4+5i et z=4-5i - On peut également noter :

7-3i=7+3i

i=-i 5=5

Remarque : Les points d'affixes z et

z sont symétriques par rapport à l'axe des réels.

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr5Propriétés : Soit z et z ' deux nombres complexes et n entier naturel non nul. a)

z=z b) z+z'=z+z' c) z×z'=z×z' d) z n =z n e) 1 z 1 z z≠0 f) z z' z z' z'≠0

Démonstrations : On pose

z=a+ib et z'=a'+ib' avec a, b, a' et b' réels. a) z=a+ib=a-ib=a+ib=z b) z+z'=a+ib+a'+ib' =a+a'+i(b+b') =a+a'-ib-ib' =a+ib+a'+ib' =z+z'

c) e) f) Démonstrations analogues d) On procède par récurrence. • L'initialisation pour n = 1 est triviale. • Hérédité : - Hypothèse de récurrence : Supposons qu'il existe un entier k >1 tel que la propriété soit vraie :

z k =z k . - Démontrons que : La propriété est vraie au rang k+1 : z k+1 =z k+1 z k+1 =z k

×z=z

k

×z=z

k

×z=z

k+1

• Conclusion : La propriété est vraie pour n = 1 et héréditaire à partir de ce rang. D'après le principe de récurrence, elle est vraie pour tout entier naturel n, soit :

z n =z n . Propriétés : a) z est réel ⇔z=z b) z est imaginaire pur ⇔z=-z

Démonstrations :

z=z ⇔a+ib=a-ib ⇔2ib=0 ⇔b=0 z=-z ⇔a+ib=-a+ib ⇔2a=0 ⇔a=0

Propriété : Soit

z=a+ib un nombre complexe alors zz=a 2 +b 2 . Démonstration : zz=a+ib a-ib =a 2 -ib 2 =a 2 -i 2 b 2 =a 2 +b 2

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr6Méthode : Déterminer un conjugué Vidéo https://youtu.be/WhKHo9YwafE Déterminer le conjugué des nombres suivants et exprimer le résultat sous la forme algébrique.

z 1 =2-i i-5 z 2 3+2i i z 1 =2-i i-5 =2-i i-5 =2+i -i-5 =-2i-10+1-5i =-9-7i z 2 3+2i i 3+2i i 3-2i -i 3-2i ×i -i×i =2+3i

III. Equations du second degré dans

Définition : Soit a, b et c des réels avec

a≠0 . On appelle discriminant du trinôme az 2 +bz+c , le nombre réel, noté Δ, égal à b 2 -4ac . Propriété : - Si Δ > 0 : L'équation az 2 +bz+c=0 a deux solutions réelles distinctes : z 1 -b+Δ 2a et z 2 -b-Δ 2a . - Si Δ = 0 : L'équation az 2 +bz+c=0 a une unique solution réelle : z 0 b 2a . - Si Δ < 0 : L'équation az 2quotesdbs_dbs44.pdfusesText_44
[PDF] pensez vous que indicatif ou subjonctif

[PDF] monument aux morts de saint martin d estréaux

[PDF] pensez-vous qu'il serait possible

[PDF] quand utiliser le subjonctif

[PDF] pensez vous qu'il faut ou qu'il faille

[PDF] invitation au voyage baudelaire

[PDF] construire l histogramme des fréquences

[PDF] histogramme des effectifs

[PDF] histogramme de fréquence excel

[PDF] polygone de fréquence cumulée

[PDF] comment faire un histogramme sur excel 2010

[PDF] exemple discussion français

[PDF] représentation graphique variable quantitative

[PDF] principe d'autonomie en ethique

[PDF] autonomie du patient hospitalisé