[PDF] [PDF] Comportement dune suite - Maths Videos





Previous PDF Next PDF



Comportement dune suite

On peut conjecturer la façon dont la suite évolue c'est à dire son sens de variation. a) suite ayant pour limite +É (ou –É) (limite infinie) :.



Première S - Comportement dune suite Problèmes

2) Méthodes pour étudier le sens de variation d'une suite II) Etude du comportement des suites à l'infini ... Prouver la conjecture faite au 2.



S Métropole septembre 2018

On définit la suite (un) par u0=a et pour tout entier naturel n : un+1=f (un) À l'aide de la calculatrice



Chapitre 3. Comportement asymptotique des suites

suite lorsque l'indice n tend vers l'infini. (2) Conjecturer sans démontrer



Partie 1 : Comportement à linfini des suites géométriques

On conjecture que la limite de la suite ( ) est 12. 2) La suite ( ) converge et la fonction est continue sur ?. La limite de la suite (  



Exercices de mathématiques pour la classe terminale - 2e partie

Quelle conjecture peut-on faire sur le comportement à l'infini de la suite ? b. Démontrer cette conjecture puis conclure. Analyse didactique.



EXERCICE :

N -ième terme de la suite N étant entré par l'utilisateur. b. Conjecturer le comportement à l'infini de la suite (un) . Variables. N



Comportement asymptotique des suites numériques

1.1 Suites convergentes. 1.1.1 Définitions. Définition. Une suite (un)n?N est dite convergente vers le réel l ou a pour limite le nombre réel l ? R si un 



Annales 2011-2015 : suites E 1

Quelle conjecture peut-on faire sur la convergence de la suite (un) ? Conjecturer le comportement de la suite (un) à l'infini.



Limite de suites

2n +3 n +1. 1. Montrer que la suite est minorée par 2. 2. A l'aide de votre calculatrice conjecturer le comportement de la suite pour des valeurs très.



[PDF] Partie 1 : Comportement à linfini des suites géométriques

d) À l'aide du graphique conjecturer la limite de la suite ( ) 2) En supposant que la suite ( ) est convergente démontrer le résultat conjecturé dans la



[PDF] Première S - Comportement dune suite Problèmes - Parfenoff org

2) Méthodes pour étudier le sens de variation d'une suite II) Etude du comportement des suites à l'infini Prouver la conjecture faite au 2



[PDF] LIMITE DUNE SUITE - Christophe Bertault

Ce qu'une suite a d'intéressant pour nous dans ce chapitre ce ne sont pas ses premiers termes mais son comportement asymptotique i e à l'infini



[PDF] Comportement dune suite - Maths Videos

On peut conjecturer la façon dont la suite évolue c'est à dire son sens de variation On dira ici que la suite (un) est croissante ? Lorsque n augmente (on 



[PDF] Chapitre 3 Comportement asymptotique des suites

nous nous intéressons ici à leur comportement asymptotique c'est à dire au comportement de la suite lorsque l'indice n tend vers l'infini



[PDF] Limites de suites - Mathsguyon

Chercher la "limite" d'une suite c'est analyser le comportement des termes Une suite qui est divergente n'admet pas nécessairement de limite infinie



Suites numériques : comportement à linfini de (qn) avec q un réel

Pour l'étude à l'infini de (qn) q étant un réel on doit utiliser à un moment de la démonstration une inégalité qui fut démontrée par Bernoulli Remarque



[PDF] Limite de suites - Mathparadise mathématiques au lycée

A l'aide de votre calculatrice conjecturer le comportement de la suite pour des Si une suite diverge cela ne signifie pas qu'elle tend vers l'infini 





[PDF] Limites de fonctions

Dans cette activité nous allons étudier plusieurs comportements en l'infini Glisser les différentes courbes dans la catégorie qui leur correspond en fonction 

  • Comment conjecturer le comportement de la suite ?

    On peut conjecturer la façon dont la suite évolue, c'est à dire son sens de variation. On dira ici que la suite (un) est croissante. ? Lorsque n augmente (on dit aussi qu'il tend vers +É), les termes se rapprochent de plus en plus de la valeur 5. On dit que la limite de la suite (un) est 5.
  • Comment conjecturer la limite d'une suite à la calculatrice ?

    Méthode : Pour la limite en + ? : afficher un tableau de valeurs en prenant des abscisses de plus en plus grandes et conjecturer sur la limite dans la colonne des ordonnées (sens de lecture du haut vers le bas). f (x) = ? ?. La lecture du graphique conduit à la même conjecture.
  • Comment conjecturer la variation d'une suite ?

    On peut conjecturer du sens de variation d'une suite gr? à sa représentation graphique. Mais ce ne sera qu'une conjecture, pas une preuve. Le calcul des premiers termes ne prouve rien non plus. Vous devez démontrer le sens de variation de façon plus abstraite, avec des termes généraux.
  • Une suite ne peut pas avoir deux limites distinctes. On proc? par disjonction de cas. Si une suite tend vers +?, elle est non majorée donc ne peut converger ni tendre vers ??. Si une suite tend vers ??, elle est non minorée donc ne peut converger non plus.
http://www.maths-videos.com 1

Comportement d"une suite

I) Approche de "sens de variation et de limite d"une suite" :

Soit la suite (un) telle que un = 5 - 7

(n + 1)2 Représentons graphiquement la suite dans un plan muni d" un repère. Il suffit de placer les points de coordonnées (n;u n) ► Il semble que, plus n augmente, plus un augmente. On a u0 < u1 < u2 .... On peut conjecturer la façon dont la suite évolue, c"est à dire son sens de variation.

On dira ici que la suite

(un) est croissante. ► Lorsque n augmente (on dit aussi qu"il tend vers +), les termes se rapprochent de plus en plus de la valeur 5. On dit que la limite de la suite (un) est 5.

On écrit alors : lim

n ® +(un) = 5 J"obtiens facilement les termes de la suite en uti- lisant la calcula trice graphique ! Je peux aussi les calculer moi même en utilisant la formule expli- cite : u

2 = 5 - 7

(2 + 1)2 = 5 - 7

32 = 45 - 7

9 = 38

9 4,22

· Si les termes diminuent, on a u0 > u1 > u2 .... on dit que la suite est décroissante.

· Elle sera dite

constante si tous les termes sont égaux. attention , certaines suites ne sont ni croissantes, ni décroissantes, ni constantes. Par exemple, un = cos(n) · Si un augmente autant qu"on veut quand n augmente, on dit que la suite tend vers + limn ® +(un) = +

· Si u

n diminue autant qu"on veut quand n augmente, on dit que la suite tend vers - limn ® + (un) = - attention, certaines suites n"ont pas de limite. Par exemple u n = (-1)n http://www.maths-videos.com 2

II) Sens d"une variation de suite :

définition : une suite (un) est : strictement croissante si et seulement si, pour tout entier naturel n, un < un+1 Ex : la suite (v n) des nombres impairs 1, 3, 5, 7, 9.... est une suite strictement croissante

C"est la suite arithmétique de premier terme v

0 = 1 et de raison 2

strictement décroissante si et seulement si, pour tout entier naturel n, un > un+1 Ex : la suite (w n)n1 des nombres 1, 1 2 , 1 3 , 1 4, 1

5.... est une suite strictement décroissante

C"est la suite telle que w

n = 1 n pour tout entier naturel supérieur ou égal à 1 constante si et seulement si, pour tout entier naturel n, un = un+1 définition : une suite (un) est monotone lorsqu"elle est soit croissante, soit décrois- sante , soit constante. Ex : ► les suites (vn) et (wn)n1 définies précédemment sont monotones. ► la suite (un) définie pour tout entier naturel n par un=(-1)n n"est pas monotone

III) Etudier le sens d"une variation de suite :

Soit (u

n) une suite définie sur il existe trois façons éventuelles de procéder : ► On peut étudier le signe de la différence un+ 1 - un

· si, pour tout entier naturel n,

un+1 - un 0 alors la suite un est croissante · si, pour tout entier naturel n, un+1 - un 0 alors la suite un est décroissante justification : u n+1 - un 0 équivaut à un+1 un et (un) est croissante u n+1 - un 0 équivaut à un+1 un et (un) est décroissante Ex : Soit la suite (un) définie pour tout entier naturel n par un = 2 + 1 n+1

Etudions le sens de variation de (u

n) n+1 = 2 + 1 n+2 - 2 - 1 n+1 = n+1 ( )n+1( )n+2 - n+2( )n+1( )n+2 -1 ( )n+1( )n+2 -1 < 0 et (n+1)(n+2) > 0 donc un+1 - un < 0 et la suite ( )un est strictement décroissante

on définit de la même façon une suite croissante ou décroissante en utilisant les inégalités au sens large.

(wn)n1 est une suite décroissante car pour tout entier naturel n, wn wn+1 http://www.maths-videos.com 3 ► On peut comparer un+1 un à 1 (uniquement si tous les termes de la suite sont strictement positifs)

· si, pour tout entier naturel n, un+1

un 1 alors la suite un est croissante

· si, pour tout entier naturel n, un+1

un 1 alors la suite un est décroissante justification : u n+1 un 1 équivaut à un+1 un et un est donc croissante u n+1 un 1 équivaut à un+1 un et un est donc décroissante Ex : Soit la suite (un) définie pour tout entier naturel n par un = 2 n 3n+2

Etudions le sens de variation de (u

n) un+1 un= 2n+1 3n+3 2n 3n+2 = 2 n+1

3n+3 x 3

n+2

2n = 2

3 or, 2 3 < 1 donc ( )un est décroissante ► Si la suite (un) est définie à l"aide d"une fonction par un=(n), on peut utiliser le sens de variation de la fonction.

· si la fonction

est croissante sur [0 ; +[, alors la suite est croissante

· si la fonction

est décroissante sur [0 ; +[, alors la suite est décroissante justification :

· Si f est croissante sur

[0 ; +[, (n+1) n équivaut à (n+1) (n) donc un+1 un (la suite (un) est donc croissante)

· Si f est décroissante sur

[0 ; +[, (n+1) n équivaut à (n+1) (n) donc un+1 un (la suite (un) est donc décroissante) Ex : Soit la suite (un) définie pour tout entier naturel n par un = 3n2

Etudions le sens de variation de (u

n)

La fonction u

n est définie par un = (n) avec (x) = 3x2

La fonction

est croissante sur [0 ; +[ donc ( )un est croissante. propriété : · une suite arithmétique de raison r est croissante si r>0 et décroissante si r<0

· la suite (v

n) telle que vn = qn pour tout entier naturel n est croissante si q>1 et décroissante si 0· Soit (u n) une suite arithmétique de raison r.

Par définition, on a u

n+1 = un + r donc un+1 - un = r - si r > 0, on a u n+1 - un > 0 donc la suite est croissante - si r < 0, on a u n+1 - un < 0 donc la suite est décroissante n"oublions pas que un>0 ! http://www.maths-videos.com 4 · Soit (vn) une suite telle que vn= qn avec q0.

Par définition, on a v

n+1 = qn+1 = qn x q = vn x q donc q = vn+1 vn - si q>1, v n+1 vn >1 donc vn+1 > vn donc la suite est croissante - si 0IV) Notion de limite d"une suite : a) suite ayant pour limite + (ou -) (limite infinie) :

Soit la suite (u

n) définie pour tout entier naturel n par un = n 2 10 b) suite ayant pour limite un nombre réel (limite finie) :

Soit la suite (u

n)n1 définie pour tout entier naturel n par un = 1 n2 + 3 Je prends un nombre réel A, aussi grand que je le veux.

Je trouve alors un rang

n0 à partir duquel tous les termes de la suite seront plus grands que A Démontrer ce qui précède quel que soit le nombre A, c"est démontrer que les termes u n de la suite sont tous aussi grands qu"on veut à condition de prendre n assez grand.

On dit que la suite (u

n) a pour limite + et on note : limn ® +(un) = +

De la même façon, on pourra montrer qu"une

suite tend vers - . Pour un nombre réel A (aussi petit qu"on veut), il existe un rang à partir duquel tous les termes de la suite sont inférieurs à A. A 1 1 0 1 A n0 un n

Je conjecture que la limite de la suite est 3

(à l"aide de ma calculatrice)

Je choisis un nombre réel positif

a aussi petit que je veux !

Je trouve alors un rang

n0 à partir duquel tous les termes de la suite seront dans l"in- tervalle ]3 - a ; 3 + a[ Démontrer ce qui précède quel que soit le réel positif a, c"est démontrer que les ter- mes u n de la suite finissent par s"accumu- ler près de 3

On dit que la suite (u

n) a pour limite 3 et on note : limn ® +(un) = 3 01 1 un 3 3 + a 3 - a n0 http://www.maths-videos.com 5 n un

Certaines suites n"ont pas de li-

mite !

Par exemple, la suite

quotesdbs_dbs15.pdfusesText_21
[PDF] limite finie d'une suite

[PDF] conjecturer la limite d'une suite avec calculatrice casio

[PDF] déterminer la limite d'une suite

[PDF] un+1=un+2n+3

[PDF] monotonie d'une suite

[PDF] conjecturer l'expression de vn en fonction de n

[PDF] en déduire l'expression de vn puis celle de un en fonction de n

[PDF] suite conjecture

[PDF] conjecturer une suite avec la calculatrice

[PDF] liste des conjonctions de coordination et de subordination pdf

[PDF] les valeurs des conjonctions de coordination

[PDF] conjonction de coordination liste complete

[PDF] conjonction de subordination liste complète

[PDF] les conjonctions de coordination exercices pdf

[PDF] conjonction de coordination exercices cm2