[PDF] TDs de mécanique des fluides.





Previous PDF Next PDF



MECANIQUE DES FLUIDES. Cours et exercices corrigés MECANIQUE DES FLUIDES. Cours et exercices corrigés

5 THEOREME DE BERNOULLI APPLIQUEAUN FLUIDE REEL. Considérons un écoulement entre deux points (1) et (2) d'un fluide réel dans une conduite. On suppose 



MECANIQUE DES FLUIDES: Cours et exercices corrigés MECANIQUE DES FLUIDES: Cours et exercices corrigés

Exercice 05 : Trouver la tension superficielle d'une bulle de savon 2) Equation de Bernoulli pour un fluide parfait incompressible (avec échange de travail):.





Mécanique des fluides Mécanique des fluides

Exercice 3: vidange d'un réservoir de fluide visqueux . Bernoulli soit valable. Est-ce que vous considérez que l'hypothèse de régime quasi perma- nent est ...



TDs de mécanique des fluides.

19 sept. 2019 En supposant le fluide parfait et en utilisant la formule de Bernoulli insta- tionnaire (on se reportera `a l'exercice 2.11) entre les deux ...



Département de Génie Civil Mécanique Des Fluides 2eme Année

4) Ecrire l'équation de Bernoulli entre les points A et B. En déduire la vitesse d'écoulement VB. Exercice N°09. Une pompe P alimente un château d'eau à partir 



Mécanique des fluides et transferts

Il s'agit de Daniel Bernoulli un physicien suisse



Exercices dapplications « T.D ». : Dynamique des fluides Parfaits

2) Appliquer le théorème de Bernoulli. 3) A quelle distance de la surface libre se trouve l'orifice ? Exercice 3: Le fuel contenu dans le réservoir source 



Mécanique des fluides

δpoly = Mg(1 − q). Rq d'où q = Mg. Mg + R δréel. ≃ 12 . Exercice 2 : Force de pression sur un tube à essais Le théorème de Bernoulli appliqué entre la ...



CORRECTION EXERCICES ECOULEMENT DES FLUIDES

CORRECTION EXERCICES ECOULEMENT DES FLUIDES. Exercice 1 : qv = 3000 L/min = 3000 ) BERNOULLI : p + ρ . g . z +. 1. 2 . ρ . v. 2. = cte. pM + ρ . g . zM +. 1.



MECANIQUE DES FLUIDES. Cours et exercices corrigés

dynamique des fluides incompressibles parfaits en particulier



MECANIQUE DES FLUIDES: Cours et exercices corrigés

Les équations qui régissent ce type d'écoulement comme l'équation de continuité et l'équation de Bernoulli sont démontrés. Elles sont la base de plusieurs d' 



Exercices de Mécanique des Fluides

1- Enoncer le théorème de Bernoulli pour un fluide parfait en précisant la signification des différents termes. 2- Appliquer la relation de Bernoulli entre les 



Département de Génie Civil Mécanique Des Fluides 2eme Année

4) Ecrire l'équation de Bernoulli entre les points A et B. En déduire la vitesse d'écoulement VB. Exercice N°09. Une pompe P alimente un château d'eau à partir 



T.D ». : Dynamique des fluides Parfaits Exercice 1: On veut

1) Déterminer la vitesse d'écoulement au niveau de l'orifice. 2) Appliquer le théorème de Bernoulli. 3) A quelle distance de la surface libre se trouve l' 



MECANIQUE DES FLUIDES I (Cours et Applications) Dr YOUCEFI

Ces quatre chapitres sont illustrés par des exercices résolus qui peuvent aider le Théorème de Bernoulli (écoulement sans échange de travail).



TDs de mécanique des fluides.

19 sept. 2019 En supposant le fluide parfait et en utilisant la formule de Bernoulli insta- tionnaire (on se reportera `a l'exercice 2.11) entre les deux ...



CORRECTION EXERCICES ECOULEMENT DES FLUIDES

BERNOULLI : p + ? . g . z +. 1. 2 . ? . v. 2. = cte. Situation A : les deux conduites sont dans le même plan horizontal : Conduite principale :.



Chapitre V : Dynamique du fluide parfait

8 Exercices complémentaires Exercice 2 : Régimes d'écoulement dans un canal ... ?v2 = cste dans tout le fluide est appelée relation de Bernoulli ...



Mécanique des fluides et transferts

Exercice 3. trouver la vitesse caractéristique d'un fluide s'écoulant dans cas où l'écoulement est laminaire puis en utilisant le théorème de Bernoulli.



[PDF] MECANIQUE DES FLUIDES Cours et exercices corrigés

La dernière partie de chaque chapitre est consacrée à des exercices corrigés 5 Théorème de Bernoulli appliqué à un fluide reel



[PDF] MECANIQUE DES FLUIDES: Cours et exercices corrigés

A la fin de chaque chapitre des exercices sont proposés avec des réponses permettant de 4 4 Généralisation du théorème de Bernoulli aux fluides réels



[PDF] Exercices de Mécanique des Fluides - AC Nancy Metz

1- Enoncer le théorème de Bernoulli pour un fluide parfait en précisant la signification des différents termes 2- Appliquer la relation de Bernoulli entre les 



[PDF] Mécanique des fluides - Laboratoire dHydraulique Environnementale

Ce recueil comprend des exercices et des problèmes corrigés Appliquer le théorème de Bernoulli pour calculer la hauteur maximale d'un jet unidi-



[PDF] Mécanique des Fluides - Télé-Enseignement

Après chaque chapitre quelques exercices bien choisis et résolus ayant fait l'objet de devoirs ou d'exercices Equation d'Euler et théorème de Bernoulli



[PDF] TDs de mécanique des fluides

19 sept 2019 · 2 Applications de la formule de Bernoulli Exercice 2 1 : Convergent On veut accélérer de l'eau dans une conduite de telle sorte que sa 



[PDF] CORRECTION EXERCICES ECOULEMENT DES FLUIDES

CORRECTION EXERCICES ECOULEMENT DES FLUIDES Exercice 1 : qv = 3000 L/min = 3000 10 Exercice 2 : 1 ) BERNOULLI : p + ? g z +



[PDF] Mécanique des fluides TD7 TSI 2

Exercice 1 : Débitmètre de venturi Un écoulement stationnaire d'un fluide supposé parfait d'utiliser la relation de Bernoulli entre l'amont et l'aval :



[PDF] Énergétique des écoulements Théorème de Bernoulli

25 nov 2022 · TD 10 – Séquence 3 : Mécanique des fluides Exercice 1 : Écritures du théorème de Bernoulli Exercice 2 : Débitmètre de Venturi



[PDF] Département de Génie Civil Mécanique Des Fluides 2eme - beldjelili

1) En appliquant le Théorème de Bernoulli entre les points A et S calculer la vitesse d'écoulement VS dans le siphon 2) En déduire le débit volumique qv 3) 

:

TDs de mecanique des

uides.

Olivier LOUISNARD

19 septembre 2019

Cette creation est mise a disposition selon le Contrat Paternite-Pas d'Utilisation Commerciale-Pas de Modication 2.0 France disponible en ligne http ://creativecommons.org/licenses/by-nc-nd/2.0/fr/ ou par courrier postal a Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.1

2 TABLE DES MATI

ERESTable des matieres

1 Hydrostatique

7

1.1 . Mesure de la densite d'une huile. . . . . . . . . . . . . . . . . .7

1.2 . Flottation a une interface. . . . . . . . . . . . . . . . . . . . . .7

1.3 . Densimetre a

otteur. . . . . . . . . . . . . . . . . . . . . . . . .8

1.4 . Densimetre a ressort (DS IFI 2009). . . . . . . . . . . . . . . .8

1.5 . Tube rempli de plusieurs

uides (rattrapage 2009). . . . . .9

1.6 . Flottation d'une barre en bois (d'apres DS IFI 2002). . . . .10

1.7 . Accelerometre hydrostatique. . . . . . . . . . . . . . . . . . . .10

1.8 . Miroirs liquides. . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1

1.9 . Force d'Archimede en referentiel non-galileen (d'apres DS

IFI 1998). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 2

1.10 . Trop-plein (DS IFI 2004). . . . . . . . . . . . . . . . . . . . . .13

1.11 . Dimensionnement d'un barrage poids. . . . . . . . . . . . . .14

1.12 . Remplissage d'un recipient ferme. (DS IFI 2010). . . . . . .14

1.13 . Clapet spherique. . . . . . . . . . . . . . . . . . . . . . . . . . .15

1.14 . Bouee conique.. . . . . . . . . . . . . . . . . . . . . . . . . . . .1 5

1.15 . Oscillations verticales d'une bouee (DS IFI 2009).. . . . . .16

1.16 . Variations de pression dans une colonne d'air. . . . . . . . .16

1.17 . Experience de Torricelli. . . . . . . . . . . . . . . . . . . . . .17

2 Applications de la formule de Bernoulli

19

2.1 . Convergent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 9

2.2 . Tubes piezometriques et de Pitot. . . . . . . . . . . . . . . . .19

2.3 . Venturi (DS IFI 2003). . . . . . . . . . . . . . . . . . . . . . . .20

2.4 . Division d'un ecoulement.. . . . . . . . . . . . . . . . . . . . . .21

TABLE DES MATI

ERES 32.5 . Siphon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 1

2.6 . Antenne de Prandtl - Mesure de vitesse. . . . . . . . . . . . .22

2.7 . Clepsydre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 3

2.8 . Vase de Tantale. . . . . . . . . . . . . . . . . . . . . . . . . . . .2 4

2.9 . Manometre a mercure. . . . . . . . . . . . . . . . . . . . . . . .24

2.10 . Couche liquide au-dessus d'un obstacle. . . . . . . . . . . . .25

2.11 . Aspiration par un venturi (DS IFI 2012). . . . . . . . . . . .26

2.12 . Exemple d'ecoulement instationnaire. . . . . . . . . . . . . .26

2.13 . Oscillations dans un tube en U. . . . . . . . . . . . . . . . . .27

3 Forces exercees par un

uide sur un corps solide. 2 9

3.1 . Eort sur un coude (DS IFI 2003). . . . . . . . . . . . . . . .29

3.2 . Eort sur une lance d'incendie.. . . . . . . . . . . . . . . . . .29

3.3 . Eort sur une tuyauterie (rattrapage 2001).. . . . . . . . . .30

3.4 . Pommeau de douche (DS IFI 2006). . . . . . . . . . . . . . . .30

3.5 . Force sur un c^one. . . . . . . . . . . . . . . . . . . . . . . . . . .31

3.6 . Reaction d'un jet d'eau. . . . . . . . . . . . . . . . . . . . . . .32

3.7 . Jet incident sur un plan incline. . . . . . . . . . . . . . . . . .33

3.8 . Tondeuse a gazon sur coussin d'air (DS IFI 2009). . . . . . .34

3.9 . Vanne de decharge. . . . . . . . . . . . . . . . . . . . . . . . . .36

3.10 . Force sur un obstacle dans une riviere (DS IFI 2010).. . .36

3.11 . Approximation de la trainee sur un corps. . . . . . . . . . .37

3.12 . Eolienne. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 9

4 Pertes et gains de charge.

41

4.1 . Pompe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 1

4.2 . Turbine de barrage. . . . . . . . . . . . . . . . . . . . . . . . . .41

4 TABLE DES MATI

ERES4.3 . Propulsion par jet. . . . . . . . . . . . . . . . . . . . . . . . . . .42

4.4 . Mesure de perte de charge. . . . . . . . . . . . . . . . . . . . .42

4.5 . Dierence de charge aux bornes d'une pompe (DS IFI 2005)43

4.6 . Pompe sur une tuyauterie avec pertes de charge (oral rat-

trapage IFI 2016). . . . . . . . . . . . . . . . . . . . . . . . . . .44

4.7 . Dimensionnement d'une pompe d'arrosage. . . . . . . . . . .45

4.8 . Ressaut hydraulique (DS IFI 2008). . . . . . . . . . . . . . . .45

4.9 . Perte de charge dans un elargissement brusque. . . . . . . .46

4.10 . Pompage d'un bac dans un autre. . . . . . . . . . . . . . . . .47

4.11 . Propulsion d'un bateau. . . . . . . . . . . . . . . . . . . . . . .48

4.12 . Tondeuse a gazon (suite). . . . . . . . . . . . . . . . . . . . . .49

4.13 . Ecoulement force par de l'air sous pression (DS IFI 2009).49

4.14 . Reseau de

uide (DS IFI 2010).. . . . . . . . . . . . . . . . .50

4.15 . Citerne (rattrapage IFI 2011).. . . . . . . . . . . . . . . . . .51

4.16 . Choix d'une pompe.. . . . . . . . . . . . . . . . . . . . . . . . .53

4.17 . Initiation aux reseaux de

uides.. . . . . . . . . . . . . . . . .53

4.18 . Tubes piezometriques sur une conduite (DS IFI 2019).. . .55

4.19 . Reseau urbain (adapte de DS IFI 2012). . . . . . . . . . . .57

4.20 . Remplissage d'un wagon-citerne (d'apres DS IFI 2013). . .61

4.21 . Circuit de refroidissement tertiaire d'une centrale nucleaire.63

4.22 . By-pass.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 5

4.23 . Barrage a stockage gravitaire (d'apres DS IFI 2017). . . . .67

5 Equations de Navier-Stokes. Ecoulements rampants.

6 9

5.1 . Ecoulement de Couette. . . . . . . . . . . . . . . . . . . . . . .69

5.2 . Ecoulement de Poiseuille. . . . . . . . . . . . . . . . . . . . . .69

5.3 . Ecoulement de Couette-Poiseuille cylindrique. . . . . . . . .70

TABLE DES MATI

ERES 55.4 . Ecoulement de Couette circulaire. . . . . . . . . . . . . . . . .71

5.5 . Ruissellement laminaire. . . . . . . . . . . . . . . . . . . . . . .72

5.6 . Amortisseur hydraulique. . . . . . . . . . . . . . . . . . . . . . .73

5.7 . Ecoulement de Couette instationnaire. . . . . . . . . . . . . .74

5.8 . Ecoulement radial entre deux disques (d'apres DS IFI 2014)74

5.9 . Courants d'eau engendres par du vent.. . . . . . . . . . . . . .77

5.10 . Ecoulement laminaire dans un tube de section quelconque

(DS IFI 2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78

5.11 . Viscosimetre plan-plan (DS IFI 2015). . . . . . . . . . . . .79

5.12 . Filage textile a l'eau (DS IFI 2016). . . . . . . . . . . . . . .80

6 Couches limites

8 2

6.1 . Epaisseurs de couche limite. Transition laminaire-turbulent.82

6.2 . Longueur d'etablissement dans un tube. . . . . . . . . . . . .82

6.3 . Deviation des lignes de courant. . . . . . . . . . . . . . . . . .82

6.4 . Souerie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 2

6.5 . Reynolds de transition laminaire-turbulent. . . . . . . . . . .83

6.6 . Theorie de Blasius pour la plaque plane. . . . . . . . . . . . .83

6.7 . Grandeurs integrales dans la couche limite laminaire. . . . .84

6.8 . Grandeurs integrales dans la couche limite turbulente. . . .85

6.9 . Trainee sur une aile d'avion. . . . . . . . . . . . . . . . . . . . .86

6.10 . Trainee sur un coureur. . . . . . . . . . . . . . . . . . . . . . .86

6.11 . Force sur un ch^ateau d'eau (DS IFI 2016). . . . . . . . . . .87

6.12 . Trainee additionnelle par un core de toit (DS IFI 2013).87

6.13 . Vitesse terminale d'une sphere en chute libre dans l'air

(oral rattrapage IFI 2016). . . . . . . . . . . . . . . . . . . . . .88

6.14 . Perte de charge additionnelle liee a des inclusions. Echan-

geurs. (probleme de synthese). . . . . . . . . . . . . . . . . . . .90

6 TABLE DES MATI

ERES6.15 . Trainee sur une potence d'eclairage (Rattrapage IFI 2018)91

6.16 . Fluidisation d'une particule solide. . . . . . . . . . . . . . . .94

A Coordonnees cylindriques

9 5

1 Hydrostatique 7

1 Hydrostatique

Exercice 1.1 : Mesure de la densite d'une huile

Un tube en U dont les branches sont tres longues, de sections= 1 cm2, est ouvert aux extremites. Il contient initialement de l'eau. D'un c^ote, on verse 10 cm

3d'huile.

La dierence de niveau entre les surfaces libres est z= 15 mm. p atmpatm hzHuile Eau

Calculer la densite de cette huile.

Rappel : la densite relative d'un corps A par rapport a un autre corps B (pris pour reference) est le rapport des masses volumiqueset0respectivement de A et B qui occupent le m^eme volumeVdans les m^emes conditions de temperature et de pression. Pour les solides et les liquides, le corps de reference choisi est l'eau. Pour les gaz, c'est l'air.

Exercice 1.2 : Flottation a une interface

Un bloc d'acier parallelepipedique<

otte>a une interface eau-mercure comme in- dique ci-dessous. On notedAetdMles densites respectives de l'acier et du mercure.

8 1 Hydrostatique

b aEau

Mercure

Acier 1.

Ca lculerl er apportd esd istancesb=a.

2.

Ap plicationn umerique: dA= 7:85,dM= 13.

Exercice 1.3 : Densimetre a

otteur Soit le densimetre (ou encore areometre) constitue d'une tige AB de section constante ssoudee en A a une carene lestee. On noteraMla masse totale de l'instrument et

Vle volume de la carene (lest compris).s

M~g z V

Exprimer la masse volumique du

uide dans lequel est plonge l'appareil en fonction de la longueur immergee de la tige z.

1 Hydrostatique 9

Exercice 1.4 : Densimetre a ressort (DS IFI 2009)

On imagine le systeme suivant pour mesurer la densite d'un uide : un tube en U de sectionSest bouche d'un c^ote par un bouchon etanche de masseM, relie a un ressort, de raideurket de longueurLau repos, dont l'autre extremite est xe. La branche de droite du tube est graduee a une hauteurhau-dessus de la position d'equilibre du bouchon en l'absence de uide. On note l0l'allongement initial du ressort en l'absence de uide, sous l'in uence du poids du bouchon. 1. En ecrivantl eb iland esfo rcess url am asseMlorsque le tube est vide, calculer l0en fonction deMetk(ce n'est pas encore de la mecanique des uides...).

On remplit ensuite le tube en U avec le

uide a caracteriser jusqu'au trait de gra- duation, et on note lla hauteur dont remonte la masseM. 2. Ecr irel eb iland esf orcessu rl am asseM(il y en a 4). On noterapMla pression dans le uide au pointM, etpatmla pression atmospherique. 3. Ecr irel 'expressiond epMa partir de la loi de l'hydrostatique et, en utilisant la question 1, en deduireen fonction dek,S, leth. 4. O nd onneh= 1m,D= 3 cm (diametre du tube),k= 0.1 N/mm, l= 5 cm.

Calculer.

M h h l0 l

Exercice 1.5 : Tube rempli de plusieurs

uides (rattrapage 2009)

On considere le tube de la gure

1 .L ap ressionau n iveaud up ointE est l ap ression atmospherique. Les densites des dierents uides sont indiquees sur la gure. 1. Ex primezl ad ierenced ep ressionpApatmen fonction demasse volumique de l'eau,gpesanteur, et les dierentes hauteurs indiquees sur la gure. 2. Ap plicationn umerique: h= 45 cm,h1= 30 cm,h2= 15 cm,h3= 40 cm.

10 1 Hydrostatique

Air (dA= 1:2103)

B C E Dp atm

Huile (dH= 0.85)

Mercure (dM= 13)Eau

h 3hh 1 h 2 A

Figure1 { Tubes

Exercice 1.6 : Flottation d'une barre en bois (d'apres DS IFI 2002) Une barre mince de longueurL, constituee par un materiau plus leger que l'eau, est accrochee a un mur en un pointA, autour duquel elle peut tourner. L'autre extremite de la barre plonge dans l'eau. Le pointAest a une hauteurhpar rapport au niveau de l'eau. On noteradla densite du materiau.h LA 1. En ecrivantl 'equilibred esm oments,ca lculerl 'inclinaisonde la barre. 2. P ourq uellev aleurcr itiqued ur apporth=Lla barre tombe-t-elle a la verticale? 3. Ap plicationn umerique: ca lculerpourd= 0:65,h= 1 m,L= 3 m.

Exercice 1.7 : Accelerometre hydrostatique

Pour verier le bon fonctionnement des dispositifs de freinage d'une automobile, on

1 Hydrostatique 11

dispose a bord d'un accelerometre constitue par un tube ABCD dont les branches AB et CD sont verticales et dont la branche BC, horizontale et de longueurl= 20 cm, est parallele au vecteur vitesse.C D BA O xz hl V Pendant un essai de freinage a acceleration negative constante, la dierence de niveau qui s'etablit entre les branches AB et CD a pour valeur h= 12 cm.

Quelle est l'acceleration de la voiture?

Exercice 1.8 : Miroirs liquides

Il est dicile et co^uteux de tailler et polir des galettes de verre massif de grande taille en une parabole parfaite. De plus, m^eme bien tailles, les miroirs se deforment sous l'eet de la temperature et au-dela d'une certaine taille, ils plient sous leur propre poids! Le technique des miroirs liquides consiste a mettre en rotation a vitesse constante une cuve remplie demercure liquide. La rotation du liquide re echissant donne a la surface la forme d'une parabole parfaite, qui ne necessite aucun polissage. En revanche, il est imperatif de supprimer toute oscillation car sinon, la surface du mercure se riderait sous l'eet des vibrations. Cette technique a permis a la NASA de realiser un miroir de 3 metre de diametre. 1. Ca lculerl 'accelerationd 'entra^nementen u np ointd eco ordonneescy lindriques( r;z). 2. A p artird el 'equationd el 'hydrostatiqueen r eferentieln onga lileen,ca lculer le champ de pression dans le liquide, et montrer que les isobares (donc en particulier la surface libre) sont des parabolo des. On noteraRle rayon de la cuve et!sa vitesse de rotation. On prendra l'origine en O'.

12 1 Hydrostatique

3. En su pposantl ev olumed em ercureVidentique lorsque la cuve est immobile ou qu'elle tourne, determiner la hauteurh=OO0en fonction de la hauteur initiale de liquideh0. 4. ( Questiond er e exion)

Com mentl el iquideest -ilm isen m ouvement

De q uelle(s)p ropriete(s)p hysique(s)d epend av otrea visl et empsp our arriver en regime permanent? v erso use d eplaceraitu neb ulled 'aird ansl el iquideen r otation?r O! Rz O' h Exercice 1.9 : Force d'Archimede en referentiel non-galileen (d'apres DS

IFI 1998)

Une cuve remplie d'un liquide de masse volumiqueest soumise a une acceleration constante et horizontale.x Oz 1. Q uelleest l afo rmeet l ad irectiond el asu rfacel ibre? 2. Un eb illed em assev olumique0est maintenue immobile, completement im- mergee au sein du uide. At= 0, on libere la bille. En faisant un bilan des

1 Hydrostatique 13

forces appliquees a la bille, determiner son acceleration at= 0 dans le repere mobile. Discuter du mouvement de la bille suivant les valeurs respectives de et0.xO~ z 0

Exercice 1.10 : Trop-plein (DS IFI 2004)

Une porte de trop-plein est representee ci-dessous. Lorsque le niveau de l'eauhest trop haut, la porteAOBs'ouvre en tournant autour d'un axe perpendiculaire au dessin passant par le pointO, et laisse passer l'eau. On note A' le point de la surface de l'eau. On negligera l'epaisseur de la porte. h L h 0BA 0A Oz x h BA 0A O

On pourra poserH=hh0.

1. Ex pliquers ommairementp ourquoil ap orteb asculel orsquel ah auteurd 'eau est trop elevee. 2. En umereret t racersom mairementl esfo rcesag issantsu rl ap orte.O nn egligera ensuite le poids de la porte. 3. Ca lculerl em omente nO d esfo rcesd ep ressionex erceesp arl 'eauet l 'airs ur la porte. 4. En n egligeantl ep oidsd el ap orte,en d eduirel ah auteurhde liquide pour laquelle la porte bascule. Le resultat depend-il de la pression atmospherique?

14 1 Hydrostatique

Exercice 1.11 : Dimensionnement d'un barrage poids Il existe plusieurs types de barrages adaptes a la structure du sol et du sous-sol que l'on peut classer en deux grandes familles : les barrages poids qui stabilisent l'eau uniquement par leur masse, et les barrages arc-boutants qui s'appuient sur les bords. Nous allons dans cet exercice calculer la taille d'un barrage poids triangulaire, de largeurl, de hauteurhet d'angle au sommet. j O 0 G iO h A On supposera la pression atmospherique negligeable dans tout l'exercice. On notera Gh3 tan;h3 ;0 le centre de gravite du barrage. La densite du beton est 2.2 1. D essinerl esd ierentesfo rcese xerceessu rl eb arrage. 2. Ca lculerl ar esultanted esfor cesd ep ressionex erceesp arl 'eauai nsil ap osition du centre de poussee de ces forces. 3. En etudiantl 'equilibred ub arragev is-a-visd el ar otationa utourd up ointO, calculer l'angleminimum pour que le barrage retienne une masse d'eau de profondeurh. Exercice 1.12 : Remplissage d'un recipient ferme. (DS IFI 2010) Un recipient ferme de hauteurHet de sectionSest initialement rempli d'eau (hau- teurh0) et d'air a pression atmospherique. En branchant une pompe a l'entree, on ajoute de l'eau dans le recipient, ce qui comprime l'air. On notehle niveau de l'eau. On supposera que l'air se comporte comme un gaz parfait, et que la compression est isotherme.quotesdbs_dbs13.pdfusesText_19
[PDF] nombre relatif 4eme pdf

[PDF] exercices corrigés puissances 4ème pdf

[PDF] controle puissance 4eme avec corrigés

[PDF] fiche exercices puissances

[PDF] evaluation sur la guerre froide et la decolonisation

[PDF] controle histoire 3ème première guerre mondiale

[PDF] eval sur la guerre froide

[PDF] cours guerre froide 3eme

[PDF] ds 3e guerre froide

[PDF] ds angles et parallélisme

[PDF] controle trigonométrie

[PDF] qcm trigonométrie seconde

[PDF] exercice trigonométrie 4eme

[PDF] exercices trigonométrie 4eme pdf

[PDF] exercice physique couleurs 1ere es