[PDF] Exercices de probabilités avec éléments de correction Memento





Previous PDF Next PDF



S Amérique du sud novembre 2015

et la droite d sont asymptotes à la courbe c u . 1. Donner les valeurs de u(1) et u(4) . 2. Donner lim x?+? u(x) . En déduire la valeur de a.



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

La suite est donc définie par : 0. 1. 3. 5 n n u u u On a représenté ci-dessous la suite de raison -05 et de premier terme 4. II. Suites géométriques.



Suites numériques

Exercice 4: Soit la suite un définie sur ?par {u0= ?2 un=4un?1 n . Donner les valeurs de u1 u2



TP2 : Calcul du mème élément des m premiers éléments dune suite )

u = 1. 2 for i = 1:249. 3 u = 2 ? u + i + 1. 4 end. • On remarque au passage que pour obtenir u250 on initialise la variable u pour lui donner la valeur u1 





SUITES GEOMETRIQUES

On note un la valeur du capital après n années. 1) Calculer u2 et 3) u n+1 =104u n. 4) q = 1



Sans titre

avec U et I correspondant aux valeurs efficaces de la tension et du courant 1 f = et f2 ?=? f Valeur moyenne. La valeur moyenne d'un signal périodique ...







Exercices de probabilités avec éléments de correction Memento

Exercice 4. Lois images. 1. Soit X une variables aléatoire de loi E(?). Déterminer la loi de ?X? + 1. C'est une loi géométrique. 2. Soit U une variable 



[PDF] SUITES GEOMETRIQUES - maths et tiques

1) Calculer u2 et u3 2) Quelle est la nature de la suite (un) ? On donnera son premier terme et sa raison 3) Exprimer un+1 en fonction de un 4) Donner la 



[PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Si le premier terme est égal à 3 les premiers termes successifs sont : u0 = 3 u1 = 8 u2 = 13 u3 = 18 Une telle suite est appelée une suite arithmétique de 



[PDF] On considére le sous-espace vectoriel F 1 de R4 formé des solutions

1) Donner une base de F échelonnée par rapport `a la base b Quel est le rang de la famille (u1u2u3u4) ? 2) Donner un syst`eme d' 



[PDF] On consid`ere lapplication linéaire : f : R 4 ? R2 (x1x2x3

1) Quelle est la matrice A de f dans la base B ? Si u ? E a pour coordonnées 2) Donner une base échelonnée de Vect(f(e1)f(e2)f(e3)f(e4)) par rapport 



[PDF] Sn = ? - Meilleur En Maths

Calculer u1 u2 u3 u4 On pourra en donner des valeurs approchées à 10?2 près b Formuler une conjecture sur le sens de variation de cette suite



[PDF] S Amérique du sud novembre 2015 - Meilleur En Maths

et la droite d sont asymptotes à la courbe c u 1 Donner les valeurs de u(1) et u(4) 2 Donner lim x?+? u(x) En déduire la valeur de a



[PDF] Exo7 - Exercices de mathématiques

Donner un exemple de fonctions f et g de R dans R toutes deux non nulles et dont Pour quelles valeurs de n l'implication Pn =? Pn+1 est-elle vraie ?



[PDF] Corrigé du TD no 11

1 10n ce qui n'est pas très étonnant : un est la valeur approchée par Donner un exemple de fonction continue g :]0 1[?]0 1[ qui n'admet pas de point 



[PDF] Suites - Exo7 - Exercices de mathématiques

1] (? est appelée la constante d'EULER) Donner une valeur approchée de ? à 10?2 près Correction ? [005222] Exercice 4 ** Soit (un)n?N une suite 



[PDF] Suites 1 Convergence - Exo7 - Exercices de mathématiques

En déduire que la suite (un) converge vers ? a 4 En utilisant la relation un+1 2 ? a = (un+1 ? ? a)(un+1 + ? a) donner une majoration de un+1 ?

  • Comment calculer u de 1 ?

    Si l'exercice demande de calculer u1, on peut se servir de la relation un+1=f(un) en rempla?nt n par 0. On obtient alors u0+1=f(u0), c'est à dire u1=f(u0).
  • Comment calculer V1 et V2 ?

    V1 = V0 – 15%V0 = (1 – 0,15) x V0 = 0,85 x 18 000 = 15 300 € en 2004. V2 = V1 – 15%V1 = (1 – 0,15) x V1 = 0,85 x 15 300 = 13 005 € en 2005. Le montant la valeur de la voiture définit une suite géométrique (Vn) de premier terme V0 = 18000 et de raison q = 0,85. Donc, pour tout entier n, on a Vn +1 = 0,85 x Vn .
Université Paris 13, Institut Galilée Préparation à l"agrégation

Année universitaire 2013-2014

Exercices de probabilités

avec éléments de correctionMemento

Fonctions associées aux lois

PourXvariable aléatoire à valeurs dansRd,

F onctionde répartition (si d= 1) :FX(t) =P(Xt),t2R F onctiongénératrice (si Xà valeurs dansN) :GX(s) =E[sX] =P1 n=0P(X=n)sn,s2 j R;Rj T ransforméede Laplace : LX() =E[eh;Xi]2]0;+1],2Rd F onctioncaractéristique : X(t) =E[eiht;Xi]2C,t2Rd Lois discrètesNomParamètresSupportDéfinition :P(A) =P

a2Ap(a)Loi de Diracaa2Rfagp(a) = 1Loi de BernoulliB(p)p2[0;1]f0;1gp(0) = 1p,p(1) =pLoi binomialeB(n;p)n2N,p2[0;1]f0;:::;ngp(k) =n

kpk(1p)nkLoi géométriqueG(p)p2]0;1]N p(k) = (1p)k1pLoi de PoissonP()2]0;+1[Np(k) =ekk!Lois continues

NomParamètresSupportDéfinition :P(A) =R

Af(x)dxLoi uniformeU([a;b])a < b[a;b]f(x) =1ba1[a;b](x)Loi exponentielleE()2]0;1[]0;+1[f(x) =ex1]0;+1[(x)Loi de Cauchya2]0;+1[Rf(x) =a(a2+x2)Loi normale/gaussienneN(m;2)m2R; 22]0;+1[Rf(x) =1p22exp

(xm)222Déterminer des lois : exemples

Exercice 1.Lois binomiale et géométrique

SoitX1;X2;:::une suite de variables aléatoires indépendantes et de loiB(p)oùp2[0;1].

1.On supposep >0. On définitN= inffn1jXn= 1g.

1.a)Montrer queP(N=1) = 0et queNsuit la loi géométrique de paramètrep.

1.b)Calculer l"espérance et la variance deN.

2.Soitn1. On définitSn=X1++Xn.

2.a)Montrer queSnsuit la loi binomiale de paramètresnetp, par une preuve directe puis en utilisant des

fonctions génératrices.

2.b)Calculer l"espérance et la variance deSn(utiliser la définition deSn).

Exercice 2.Minimum et maximum d"une famille de variables aléatoires exponentielles

SoitX;Ydeux variables aléatoires indépendantes de lois respectivesE()etE(). À l"aide de fonctions de

répartition, déterminer les lois deU= min(X;Y)etV= max(X;Y). On précisera leur densité (le cas échéant).

Exercice 3.Somme de variables aléatoires

1.SoitX;Ydes variables aléatoires indépendantes de loisP()etP(). Déterminer la loi deX+Y, directement

puis via les fonctions génératrices.

2.SoitX;Ydes variables aléatoires indépendantes de loi de Cauchy de paramètreaetb. À l"aide des fonctions

caractéristiques, déterminer la loi deX+Y.Pour obtenirX, on pourra utiliser la formule de Cauchy avec un

contour bien choisi, ou alors avoir l"idée de calculer la fonction caractéristique de la loi de Laplace

a2 eajxjdx et utiliser la formule d"inversion.

Exercice 4.Lois images

1.SoitXune variables aléatoire de loiE(). Déterminer la loi debXc+ 1.C"est une loi géométrique.

2.SoitUune variable aléatoire de loiU([1;1]). Déterminer la loi dearcsin(U).

3.SoitXde loiN(0;1). Déterminer la loi dejXj.

1

4.SoitX;Ydeux variables aléatoires indépendantes de loiN(0;1). Déterminer la loi deXY

. En déduire la loi de 1Z siZsuit une loi de Cauchy de paramètre 1.

5.SoitX;Ydeux variables aléatoires indépendantes de loiN(0;1). On définit les variables aléatoiresR;par

(X;Y) = (Rcos;Rsin),R >0et2[0;2[. Montrer queRetsont indépendantes et déterminer leurs lois.

Exercice 5.Loi Gamma

Poura >0et >0, on définit la loi

a;par sa densité relativement à la mesure de Lebesgue : f a;(x) =a(a)xa1ex1R+(x):

1.Vérifier que cette fonction définit bien une densité.

2.Déterminer l"espérance de cette loi.On utilise le fait que(a+ 1) =a(a)pour obtenir que l"espérance de cette loi esta=.

3.SoitV1;V2;:::;Vndes variables aléatoires réelles indépendantes de loiE(). Déterminer la loi du vecteur

(V1;V1+V2;:::;V1++Vn)et en déduire queV1++Vn n;.Pourn= 1, ok. Supposonsn2etS:=V1+:::+Vn1de loi n1;. Soitgune fonction mesurable bornée deRdansR. On a

E(g(V1+:::+Vn)) =E(g(S+Vn)) =Z

R g(x+y)dP(S;Vn)(x;y) et

E(g(V1+:::+Vn)) =Z

R g(t)dPV1+:::+Vn(t): Commef(v1;:::;vn1) =v1+:::+vn1etg(vn) =v2nmesurables on en déduit queSetVnsont indépen- dantes car(V1;:::;Vn1)etVnle sont, Z R g(x+y)dP(S;Vn)(x;y) =Z 1 0 dxZ 1 x dtg(t)n1(n1)etxn2 Z 1 0 g(t)n1(n1)etxn1=(n1)t 0dt Z R g(t)n(n)exp(t)tn11R+(t)dt

4.SoitXetYdeux variables aléatoires réelles indépendantes de loi

a;.

4.a)Déterminer la loi deX.On peut utiliser la fonction de répartition. Avec un changement de variable on voit queX

a;1.

4.b)Montrer queX+YetX=Ysont des v.a. indépendantes dont on calculera les lois.Soitgune fonction mesurable bornée deR2dansR2. On a

E(g(X+Y;X=Y)) =Z

R

2g(u;v)dP(X+Y;X=Y)(u;v)

et

E(g(X+Y;X=Y)) =Z

R

2gf(x;y)dP(X;Y)(x;y)

oùf(x;y) = (x+y;x=y)définie de(R+)2vers(R+)2. Comme les variablesXetYsont indépendantes, le couple(X;Y)a pour densitédPX(x)dPY(y)par rapport à la mesure de Lebesgue surR2. On fait alors le changement de variableu=x+y,v=x=y, pourx >0ety >0; Ceci est équivalent àx=uv=(v+ 1)ety=u=(v+ 1)pouru >0etv >0.

On a de plusjJ(u;v)j=v=(v+ 1)u=(v+ 1)

1=(v+ 1)u=(v+ 1)2

=u(v+ 1)2. Il suit

E(g(X+Y;X=Y)) =Z

R

2g(u;v)u2a1eu1u>0va1(v+ 1)2a1v>02a(a)2dudv:

2 Les variables sont indépendantes,dPX+Y(u) =2a(2a)u2a1eu1u>0duetdPX=Y(v) = (2a)(a)2v a1(v+ 1)2a1v>0dv.

4.c)Montrer queX+YetX=(X+Y)sont des v.a. indépendantes. Calculer la loi deX=(X+Y).Soitgune fonction mesurable bornée deR2dansR2. On a

E(g(X+Y;X=(X+Y))) =Z

R

2g(u;v)dP(X+Y;X=(X+Y))(u;v)

et

E(g(X+Y;X=(X+Y))) =Z

R

2gf(x;y)dP(X+Y;X=(X+Y))(x;y)

oùf(x;y) = (x+y;x=(x+y))définie de(R+)2vers(R+)2. Comme les variablesXetYsont indépendantes,

le couple(X;Y)a pour loidPXdPY=fa;(x)fa;(y)dxdy. On fait alors le changement de variableu=x+y,v=x=(x+y), pourx >0ety >0; Ceci est équivalent àx=uvety=u(1v)pouru >0etv2(0;1).

On a de plusjJ(u;v)j=v u

1vu =u. Il suit

E(g(X+Y;X=(X+Y))) =Z

R Les variables sont donc indépendantes et on a de plusdPX=(X+Y)(v) =(2a)(a)2(v(1v))a1105.SoitXetYdeux variables aléatoires réelles indépendantes de loi a;et b;respectivement. Déterminer la loi deX+Y.Le seul point délicat est de calculer Rt

0xa1(tx)b1dx=ta+b1R1

0ya1(1y)b1dy=ta+b1Ca;b. La

constanteCa;best forcément égale à(a)(b)=(a+b)en tenant compte de la normalisation.

6.SoitZ1;Z2;:::;Zndes variables aléatoires réelles indépendantes de loiN(0;1).

6.a)Montrer queZ21suit une loi

1=2;1=2.SiZ1est de loiN(0;1)etgune fonction mesurable bornée deRdansR, on a

E(g(X2)) =Z

R g(u)dPX2(u)E(g(X2)) =Z R g(x2)dPX(x) =1p2Z R g(x2)ex2=2dx:

Par parité dex7!g(x2)ex2=2on aE(g(X2)) =2p2R

1

0g(x2)ex2dx=2p2R

1

0g(y)ey=2dy2

py donc dP

X2(y) =1p2ey=2y1=21R+(y)dy.

6.b)Montrer queZ21++Z2nsuit une loi

n=2;1=2.La loi n=2;1=2est également appelée loi du khi-deux àn

degrés de liberté, notée2n.On le montre par récurrence. Pourn= 1c"est vrai. Supposons queSn1=Z21+:::+Z2n1

n12 ;12 et Z n N(0;1). On aSn=Sn1+Z2n. Commef(z1;:::;zn1) =z21+:::+z2n1etg(xn) =z2nmesurables on

en déduit queSn1etZ2nsont indépendantes car(Z1;:::;Zn1)etZnle sont. On utilise ensuite la question

5 donnant queSnsuit une

n12 +12 ;12 n2 ;12

Propriétés générales

Exercice 6.Conséquences du théorème de Fubini, fonctions indicatrices

Résoudre les questions suivantes en appliquant le théorème de Fubini(-Tonelli) de la façon suggérée.

1.SoitNune variable aléatoire à valeurs dansN. Montrer que

E[N] =X

n1P(Nn): 3 On note que, commeNest à valeurs entières,N=PN k=11 =P1 k=11fkNg. Le théorème de Fubini-Tonelli donne

E[N] =E"

1X k=11 fkNg# =1X k=1E[1fkNg] =1X k=1P(kn):

Le théorème de Fubini est ici appliqué à la fonction(n;!)7!1fkN(!)gpar rapport à la mesure produit

m N P, oùmNest la mesure de comptage surN:mN(A) = Card(A)siAN(et doncRfdmN=P n2Nf(n)

pourf:N!R). En l"occurrence, il est en fait plus simple de voir ceci comme une application du théorème

de convergence monotone pour les séries à termes positifs.

2.SoitXune variable aléatoire à valeurs dansR+, et >0. Montrer que

E[X] =Z

1 0 t1P(X > t)dt

et donner une généralisation de cette formule.On note que, commeX0, par " intégration de la dérivée »,X=RX

0t1dt=R1

01ft théorème de Fubini-Tonelli (pour la mesuredt

P) donne donc

E[X] =Z

1 0

E[1ft 1 0

P(X > t)t1dt:

Le principe de la preuve s"applique par exemple à toute fonctiongmonotone de classeC1de]0;+1[dans

R, pour laquelle on peut écrireg(X) =g(0) +RX

0g0(t)dt, d"où de même

E[g(X)] =g(0) +Z

1 0

P(X > t)g0(t)dt:

3.Soit(An)n1une suite d"événements.

3.a)On noteNle nombre (aléatoire) d"événéments parmi ceux-ci qui se produisent. CalculerE[N]en fonction

des probabilitésP(An),n1.On note queN=P1 n=11An. Par suite, par le théorème de Fubini-Tonelli (pour la mesuremN

PoùmN

est la mesure de comptage surN),

E[N] =1X

n=1E[1An] =1X n=1P(An):

3.b)On suppose queP

nP(An)<1. Montrer que presque-sûrement seul un nombre fini d"événements de la

suite ont lieu.C"est le lemme de Borel-Cantelli (partie la plus facile mais néanmoins la plus utile).Par la question précédente, l"hypothèse équivaut àE[N]<1. Or ceci implique queN <1p.s., ce qui

signifie que, presque sûrement, un nombre fini d"événement de la suite ont lieu.

4.CalculerC=R

Rex2dxsans utiliser de coordonnées polaires. (ÉcrireC2comme une intégrale double puis, dans l"intégrale,e(x2+y2)=R1 x

2+y2etdt)Par le théorème de Fubini-Tonelli,

C 2=Z 1 0 ex2dxZ 1 0 ey2dy=Z ]0;1[2e(x2+y2)dxdy: En écrivant (par une intégration immédiate)e(x2+y2)=R1 x

2+y2etdt=R1

01ft>x2+y2getdtpourx;y >0,

on a, à nouveau par le théorème de Fubini-Tonelli, C 2=Z ]0;1[2Z 1 0 1 ft>x2+y2getdtdxdy=Z 1 0 et Z ]0;1[21ft>x2+y2gdt! dxdy L"intégrale entre parenthèses est l"aire du quart de disque de rayon pt, donc vautt4 (certes, s"il fallait le

redémontrer, ceci se ferait le plus directement en passant en coordonnées polaires...). On a donc

C 2=4 Z 1 0 tetdt=4 4

(intégration par parties, ou reconnaître l"espérance de la loiE(1)pour éviter de refaire le calcul), d"oùC=p

2

On rappelle la preuve classique : partant deC2=R

]0;+1[2e(x2+y2)dxdycomme ci-dessus, il suffit d"effectuer un changement de coordonnées pour passer en coordonnées polaires ((r;)7!(rcos;rsin)est bien un difféomorphisme de]0;+1[]0;2 [sur]0;+1[2, de jacobienr7!r) : C 2=Z =2 0Z 1 0 er2rdrd=2 12 er21 r=0=4

5.SoitA1,...,Andes événements. Montrer laformule du crible, oùjSjdésigne le cardinal deS:

P(A1[ [An) =nX

k=1(1)k+1X

1i1<

Sf1;:::;ng;S6=;(1)jSj+1P\

i2SA i :Pour tous événementsAetB, on a1A\B=1A1Bet1Ac= 11A, en revanche il n"y a pas de formule aussi

simple pour la réunion, mais on peut se ramener à une intersection en passant au complémentaire :

1 A[B= 11Ac\Bc= 11Ac1Bc= 1(11A)(11B) =1A+1B1A1B=1A+1B1A\B;quotesdbs_dbs45.pdfusesText_45

[PDF] calculer u1 u2 u3 u4

[PDF] carnet de voyage scolaire rome

[PDF] soit énumération

[PDF] soit virgule

[PDF] avec quelle espece chimique reagit le fer lorsqu'il rouille

[PDF] quand mettre soit ou soient

[PDF] soit adverbe

[PDF] soit conjonction

[PDF] soit soient académie française

[PDF] soit c'est ? dire

[PDF] soit quebec

[PDF] forces et faiblesses des usa

[PDF] les etats unis une superpuissance cours terminale

[PDF] l'hyperpuissance américaine depuis 1991

[PDF] différence entre hyperpuissance et superpuissance