[PDF] Méthodes numériques de résolution d’équations di?érentielles





Previous PDF Next PDF



Méthodes numériques de résolution déquations différentielles

ª Le syst`eme est bien d'ordre 1 mais il est non linéaire. Calcul numérique d'une solution approchée. Pas d'expression explicite de la solution. ?. Calcul ...



Chapitre Résolution numérique des équations différentielles Master

II ´Equations différentielles d'ordre n La résolution numérique consiste `a ... Soit l'équation différentielle du seconde ordre suivante :.



Résolution numérique des Équations Différentielles Ordinaires

Le théorème de la “Seconde barrière de Dahlquist” est-t-il respecté? ?. Exercice 6.4 Calculer l'intervalle de stabilité absolue pour la méthode d'Euler 



Résolution numérique des équations différentielles ordinaires (EDO

Ordre n de la méthode = plus grande puissance de h prise en compte dans l'approximation. — Somme des termes négligés = erreur de troncature locale ? hn+1.



Résolution numérique des équations différentielles

Lorsque f est de classe C 1 la méthode d'Euler est une méthode consistante d'ordre 1. JP Becirspahic — Résolution numérique des équations différentielles 



Méthodes numériques de résolution déquations différentielles

De nos jours la. 9. Page 10. Calcul Formel et Numérique : Licence sciences et technologies



Ift 2421 Chapitre 6 Résolution des équations différentielles

Chapitre 6. Résolution numérique des équations différentielles. Exemple du pendule : Équation différentielle non linéaire du second ordre.



Résolution numérique des équations différentielles

Une solution de cette équation différentielle est une fonction x de classe C 1 du second ordre vérifiée par la fonction s mais la démarche numérique ...



11. Introduction à la programmation de la résolution numérique d

19-Oct-2021 Évidemment le calcul approché par une méthode numérique de la solution ... On intègre un système d'équations différentielles du second ordre ...



Méthodes numériques pour les équations différentielles

On appelle EDO d'ordre n de fonction second membre f l'équation résoudre de manière approchée et itérative l'équation différentielle (x) = ? x +(x) ...



Résolution numérique des équations différentielles 1 Les équations

Résolution numérique des équations différentielles Rappels: 2 grandes classes: 1 Les équations différentielles ordinaires: une seule variable 2 Les équations aux dérivées partielles: plusieurs variables (équation de la chaleur des ondes ) Ordre d’une équation différentielle : dérivée la plus élevée



Chapitre 5 : Équations différentielles

On dit qu’une équation différentielle de la forme y?(t) ?ay(t) = g(t) est homogène lorsque l’on considère comme second membre une fonction gidentiquement nulle ce que l’on note g?0 Dé?nition Soient Iun intervalle de R et a?I?R une fonction continue



Méthodes numériques de résolution d’équations di?érentielles

Calcul Formel et Numérique : Licence sciences et technologies deuxième année Année 2006-2007 Une équation di?érentielle est une équation qui dépend d’une variable t et d’une fonction x(t) et qui contient des dérivées de x(t) Elle s’écrit : F tx(t)x(1) (t) x(m) (t) = 0 où x(m) (t) ? dmx dtm (1)





Chapitre 7 : Résolution numérique des équations

résolution numériques complètement différentes Pour les problèmes aux conditions initiales d’ordre 2 il existe des méthodes numé-riques spéci?ques Cependant il est toujours possible de les ramener à un système de deux équations différentielles d’ordre 1 couplées et avec conditions initiales En effet

Quelle est la résolution numérique des équations différentielles ?

Les équations différentielles ordinaires (O.D.E) 1 Résolution numérique des équations différentielles 1. Les équations différentielles ordinaires (O.D.E) Sébastien Charnoz & Adrian Daerr Université Paris 7 Denis Diderot CEA Saclay 2 Les systèmes dynamiques L’évolution des systèmes dynamiques sont régis par des équations différentielles

Quels sont les différents types d'équations différentielles?

Résolution numérique des équations différentielles Rappels: 2 grandes classes: 1. Les équations différentielles ordinaires: une seule variable. 2. Les équations aux dérivées partielles: plusieurs variables. (équation de la chaleur, des ondes, ...)

Comment résoudre une équation différentielle?

Une solution particulière de l’équation est une fonction gqui vérifie l’équation. Résoudre l’équation différentielle c’est trouver la solution générale de (E) qui est formée par l’ensemble de toutes les fonctions solutions de (E). 2.

Comment calculer l’équation différentielle d’ordre 2?

Équation différentielle d’ordre 2 y??(t) = f (t,y(t),y?(t)) Avec les 2 conditions limites : y(t0 )= y0 et y(t1 )= y1 Type différent de celles données avec des conditions initiales. Les méthodes vues précédemment ne s’appliquent pas car nous ne connaissons pas y?(t0 )

Méthodes numériques de résolution d’équations di?érentielles Méthodes numériques de résolution d"équations différentielles

Brian Stout

brian.stout@fresnel.fr

Université de Provence

Institut Fresnel, Case 161 Faculté de St Jérôme

Marseille, France

Fevrier 2007

Table des matières

1 Problème de Cauchy :2

2 Transformations vers un problème de Cauchy3

2.1 Traitement d"une équation différentielle d"ordre>1. . . . . . . . . . . . . . . . . 3

2.2 Equations différentielles à coefficients constants. . . . . . . . . . . . . . . . . . . 4

2.3 Exemple - Vol d"un point solide dans un champ de pesanteur.. . . . . . . . . . . 4

2.4 Détermination des paramètres initiaux. . . . . . . . . . . . . . . . . . . . . . . . 7

3 Solutions numériques des équations différentielles9

3.1 Formulation générale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Méthode itérative de Picard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Exemple : méthode de Picard pour résoudre l"équationd

dty(t) =t-y(t). 11

3.3 Méthodes basées sur la série de Taylor. . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Méthode d"Euler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.2 Méthodes de Taylor d"ordre plus élevés. . . . . . . . . . . . . . . . . . . . 14

3.4 Runge Kutta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.1 Runge Kutta d"ordre 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.2 Runge Kutta : ordres 3 et 4. . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.3 Runge Kutta à pas adaptatif et méthodes prédiction correction. . . . . . 21

3.5 Fonctions Euler et Runge Kutta adaptée ày?Rm. . . . . . . . . . . . . . . . . 21

4 Applications22

4.1 Mécanique des points solides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Mouvement d"un point solide avec forces de frottement:. . . . . . . . . . 22

4.1.2 Orbite d"un satellite :. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Circuits électriques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Evolution temporelle des populations. . . . . . . . . . . . . . . . . . . . . . . . . 26

1

Calcul Formel et Numérique : Licence sciences et technologies, deuxième année Année 2006-2007

Une équation différentielle est une équation qui dépend d"une variabletet d"une fonctionx(t)

et qui contient des dérivées dex(t). Elle s"écrit : F t,x(t),x (1)(t),...,x(m)(t)? = 0oùx(m)(t)≡d mx dtm(1)

L"ordre de cette équation est déterminé par sa dérivée d"ordre le plus élevé. Donc l"équation (

1) est d"ordrem. La solution du problème consiste à trouver une fonctionx(t)qui soit solution de ( 1) et dérivable sur un intervalle fini det?[t

0,t0+T]deR. Souvent dans les applications, la variable

treprésente le temps, ett

0est alors l"instant initial. En général, il n"existe une solution unique

à une équation différentielle qu"une fois certaines conditions limites imposées surx(t)et ses

dérivées. Dans l"exemple de l"équation (

1) lesconditions initialessont les valeurs dex(t0),

x (1)(t0),...,x(m-1)(t0).

1 Problème de Cauchy :

La plupart des méthodes numériques pour résoudre les équations différentielles s"appliquent

à des problèmes du typeproblème de Cauchysuivant le nom donné par les mathématiciens. Ce

problème se formule de la manière suivante :

Trouvery(t)définie et dérivable sur[t

0,t0+T]et à valeurs dansRmtelle que :

dy(t) dt=f(t,y(t))?t?[t0,t0+T] y(t

0) =y0

(2) oùf(t,y(t))est une fonction deR m+1dansRmety0?Rm. Concrètement l"expression, "trouver y(t)à valeurs dansR mavecy0?Rm" consiste à dire pour des applications comme Matlab, que l"inconnuey(t)est un vecteur demfonctions inconnues avec pour condition limite le vecteur y 0: y(t) =?????y 1(t) y 2(t) y m(t)????? y

0=y(t0) =?????y

1(t0) y 2(t0) y m(t0)????? =?????y 0,1 y0,2... y 0,m ?(3) De même,f(t,y(t))est une fonction detet du vecteury(t)et doit retourner un vecteur colonne : dy(t) dt≡ddt?????y 1 y2... y m ?=f(t,y(t))≡?????f 1 f2... f m ?(4)

Pour la plupart des problèmes qui intéressent les scientifiques et les ingénieurs, des théo-

rèmes mathématiques assurent l"existence et l"unicité d"une solution au problème de Cauchy.

Néanmoins, souvent la solution ne peut être expriméeanalytiquement. Pour de tels problèmes,

on doit donc chercher à déterminer la fonctiony(t)par des méthodesnumériques. 2

Calcul Formel et Numérique : Licence sciences et technologies, deuxième année Année 2006-2007

2 Transformations vers un problème de Cauchy

Dans Matlab (Octave), de puissant programmes (fonctions) existent sous le nom générique de ODEs (Ordinary Differential Equation Solvers). Ils résolvent les systèmes de la forme de l"équation (

2). Le travail principal d"un utilisateur de Matlab consistedonc le plus souvent à

transformer son problème sous la forme de l"équation (

2). Dans bien des domaines, surtout ceux

des équations à dérivées partielles, les transformations d"un problème donné sous la forme d"un

problème de Cauchy sont toujours d"actualité comme problèmes de recherche.

2.1 Traitement d"une équation différentielle d"ordre>1

Dans ce cours, nous ne regarderons que la transformation d"une équation différentielle d"ordre

supérieur à 1, en problème de Cauchy. Considérons donc une équation différentielle d"ordrem

de la forme suivante : x (m)(t)≡dx (m-1) dt=?? t,x(t),x (1)(t),...,x(m-1)(t)? ?t?[t0,t0+T](5)

Posons de nouvelles fonctionsy

i(t)aveci?[1,2,...,m]définies telles que : y

1(t)≡x(t), y2(t)≡x(1)(t),..., ym(t)≡x(m-1)(t)(6)

Grâce à ces définitions, l"équation (

5) d"ordrems"écrit comme un système deméquations

dy1(t) dt=y(2)(t) dym-1(t) dt=y(m)(t) dym(t) dt=?(t,y1(t),y2(t),...,ym(t))(7) Ce système a donc la forme d"un problème de Cauchy en posant : y(t) =?????y 1(t) y m-1(t) y m(t)????? etf(t,y(t)) =?????y 2(t) y m(t) ?(t,y

1,...,ym)?????

(8)

L"équation (

5) s"écrira alors :

dy(t) dt=f(t,y(t))?t?[t0,t0+T](9) Pour obtenir alors un problème de Cauchy, il faut spécifier les conditions initiales(y

1(t0),y2(t0),

...,y

m(t0))ce qui revient à dire d"après l"équation (6), qu"il faut connaîtrex(t)et ses dérivées

jusqu"à l"ordrem-1au 'temps" initialt

0:?x(t0),x(1)(t0),...,x(m-1)(t0)?. On remarque qu"une

équation différentielle d"ordremd"une seule fonction inconnue,x(t), se traduit par un problème

de Cauchy avecmfonctions inconnues,y i(t), etmconditions initiales. 3

Calcul Formel et Numérique : Licence sciences et technologies, deuxième année Année 2006-2007

2.2 Equations différentielles à coefficients constants

En particulier, les équations différentielles à coefficientsconstants constituent une classe

d"équations de la forme de l"éq.(

5). Notamment quand?est de la forme :

t,x(t),x (1)(t),...,x(m-1)(t)? l"équation l"éq.(

5) peut s"écrire comme une équation différentielle à coefficients constants :

a

1x(t) +a2x(1)(t) +...+amx(m-1)(t) +x(m)(t) =s(t)(11)

où la fonctions(t)est communément appelée un terme source.

Pour des équations de la forme de l"éq.(

11), les substitutions de l"éq.(6) amènent à un système

d"équations de forme matricielle. Par exemple, une équation à coefficients constants d"ordre4

s"écrit : a

1x(t) +a2x(1)(t) +a3x(2)(t) +a4x(3)(t) +x(4)(t) =s(t)(12)

Après les substitutions de l"équation (

6), cette équation s"écrit :

a

1y1(t) +a2y2(t) +a3y3(t) +a4y4(t) +ddty4(t) =s(t)(13)

et l"équation (

9) peut s"écrire sous une forme matricielle :

d dt???? y 1(t) y 2(t) y 3(t) y

4(t)????

=????0 1 0 00 0 1 00 0 0 1-a1-a2-a3-a4 ?????y 1(t) y 2(t) y 3(t) y

4(t)????

+????000 s(t)???? (14)

Même s"il est intéressant de voir ce type de problème comme une équation matricielle, nous ne

devons pas oublier que la formulation de l"équation (

9) nous permet de traiter bien des problèmes

qui ne prennent pas la forme d"une équation matricielle. On remarque aussi qu"il y a beaucoup de zéros dans l"équation (

14) et donc une multiplication de matrice n"est pas la façon la plus

éfficace de programmerf(t,y(t))(Voir la fonction (A)de la section2.3ci-dessous).

2.3 Exemple - Vol d"un point solide dans un champ de pesanteur.

Imaginons qu"on cherche à résoudre numériquement le problème du mouvement d"un point solide de massemà la position-→x(t) =x?x+y?y+z?zayant une vitesse-→v= d-→x dtdans un champ de pesanteur-→g. (figure 1) La mécanique du point nous dit qu"il suffit d"appliquer la relation fondamentale de la dyna- mique au point solide : m d-→v dt=-→P=m-→g(15)

Puisqu"il s"agit d"une équation vectorielle, nous avons enprincipe trois équations scalaires à

résoudre, mais nous savons que le vol du point s"effectue dansun plan parallèle au plan défini

par(xOz). On arrive donc à un système de deux équations différentielles de deuxième ordre à

résoudre : d2x dt2= 0 d2z dt2=-g(16) 4

Calcul Formel et Numérique : Licence sciences et technologies, deuxième année Année 2006-2007

v(t) P xzv0 ?0 Fig.1 - Mouvement d"un point de masse dans un champ de pesanteur

Avec les conditions limites

x(t

0) =x0x(1)(t0) =v0,x

z(t0) =z0z(1)(t0) =v0,z(17) nous connaissons la solution exacte de chacune de ces deux équations : x(t) =x

0+v0,xt

z(t) =z

0+v0,zt-12gt

2(18)

Nous voulons simplement tester notre capacité à trouver la solution de façon numérique. La

connaissance d"une solution exacte nous permet de tester différentes méthodes de résolution numérique d"équations différentielles. Pour résoudre les équations différentielles d"ordre2de l"éq.(

16) on va définir des fonctions

du systèmeu(t)(pour ne pas confondre avec la positiony(t)) et invoquer les substitutions de l"éq.( 6) : u

1(t)≡x(t)

u

2(t)≡x(1)(t) =vx(t)(19)

L"équation

d2x dt2= 0devient donc le système matriciel : d dt? u 1(t) u 2(t)? =?0 10 0?? u 1(t) u 2(t)? (20)

De même on peut définir

u

3(t)≡z(t)

u

4(t)≡z(1)(t) =vz(t)(21)

et le système d2z dt2=-gdevient : d dt? u 3(t) u 4(t)? =?0 10 0?? u 3(t) u 4(t)? +?0-g? (22) 5

Calcul Formel et Numérique : Licence sciences et technologies, deuxième année Année 2006-2007

On peut regrouper ces deux équations sous la forme d"une seule grande équation matricielle : du dt≡ddt???? u 1(t) u 2(t) u 3(t) u

4(t)????

=????0 1 0 00 0 0 00 0 0 10 0 0 0???? ?u 1(t) u 2(t) u 3(t) u

4(t)????

+????000-g???? (23) ou de manière équivalente : du dt=f(t,u(t)) =????u 2(t) 0 u 4(t) -g???? (24) La solution de cette équation va donc nous fournir les fonctions :x(t) =u

1(t),vx(t) =u2(t),

z(t) =u

3(t), etvz(t) =u4(t). On peut facilement programmer une fonction en Octave/Matlab

pour calculerf(t,u(t)): function f = fprojectile(u,t)% en Matlab - 'function f = fprojectile(t,u)" % fonctionf(t,u(t))pour une particule dans un champ de pesanteur nc = length(u); f = zeros(nc,1);(A) f(1) = u(2); f(2) = 0; f(3) = u(4); f(4) = -9.8; % valeur de g end Important :Il est très important que la fonction retourne unvecteur colonne. Les fonctions

Matlab (Octave) pour résoudre une équation différentielle ne marchent pas si la fonction retourne

un vecteur ligne. L"écriture de la fonction ' fprojectile" permet à l"argumentud"être un vecteur ligne ou un vecteur colonne. Il s"avère assez commode de prendreucomme un vecteur ligne.

Maintenant on peut utiliser la fonction '

lsode" d"Octave ('ODE45" de MatLab) pour résoudre

numériquement l"équation différentielle. Cette fonction prend en argument le nom de la fonc-

tionf(t,u(t)), un vecteur contenant les valeurs det= [t

0,t1,...,tN]pour lesquelles on veut

connaître les valeurs deu(t),[u(t

0),u(t1),...,u(tN)]. Pour certaines applications, on ne s"in-

téressera qu"à une seule et unique valeuru(t

N); dans ce cas, on donne simplement un vecteur

t= [t

0,tN]. Dans les cas où il faut connaître une trajectoire, il faut quet= [t0,t1,...,tN]

contienne suffisamment d"éléments pour que les courbes générées par ' plot" paraissent lisses. Le script suivant résout l"équation différentielle de l"équation (

16) avec les conditions initiales

x

0=z0= 0,v0≡??-→v0

?= 100ms-1,θ0≡(?x,-→v0) = 30◦et montre la position de la particule pourN+ 1 = 31temps compris entre0et11s. tmin = 0;% temps initialt0 tmax = 11;% temps finalet0+T v0 =100;% vitesse intiale en mètres par seconde thetdeg =30;% angle initial en degrésquotesdbs_dbs33.pdfusesText_39
[PDF] résolution numérique équation différentielle non linéaire

[PDF] test de psychologie pdf

[PDF] test de personnalité psychologie gratuit

[PDF] matlab equation différentielle non linéaire

[PDF] questionnaire de personnalité ? imprimer

[PDF] faire de sa vie une oeuvre d'art foucault

[PDF] test de personnalité recrutement gratuit pdf

[PDF] fais de ta vie une oeuvre dart citation

[PDF] faire de sa vie une oeuvre d'art citation

[PDF] test de personnalité gratuit avec résultat pdf

[PDF] toute conscience est conscience de quelque chose

[PDF] test personnalité pdf

[PDF] il faut faire de sa vie une oeuvre d'art citation

[PDF] qui a dit il faut faire de sa vie une oeuvre d art

[PDF] quel est le secret du petit prince