[PDF] Chapitre 3 Méthode du simplexe





Previous PDF Next PDF



LES ÉTAPES DE LALGORITHME DU SIMPLEXE

Un programme linéaire (PL) mis sous la forme particulière où toutes les contraintes sont des équations et toutes les variables sont non négatives est dit sous 



Leçon 0603C La programmation linéaire 2 le simplexe

La résolution par l'algorithme du simplex se déroule selon 8 étapes avant un nouveau passage. 1ère étape : Écrire le système sous forme standard. Il s'agit 



1 Programmation linéaire Algorithme du simplexe Résolution de

3-Le tableau suivant est–il le dernier et pourquoi ? Si oui donner la solution optimale de (P) et son coût. Question 1. On met le programme linéaire (P) 



Chapitre 3 Méthode du simplexe

nous savons que la solution optimale du problème d'optimisation linéaire ... Le principe de la méthode du simplexe est d'éviter de calculer tous les.



Programmation linéaire. Méthode du simplexe.

Oct 25 2010 Un programme linéaire est la maximisation ou la minimisation d'une fonction linéaire sous des contraintes linéaires. 2.1 Exemple. Voici un petit ...



Algorithme du simplexe - Une solution à la programmation linéaire

Mar 18 2008 Alg `ebre lin éaire. Algorithme du simplexe. R ésum é. Algorithme du simplexe. Une solution `a la programmation linéaire. Hugues Talbot.



Dualité en Programmation Linéaire Algorithmes primal et dual du

Ecrire le dual de ce problème. A-t-il une solution réalisable ? Confirmer votre réponse en résolvant (P) par l'algorithme du simplexe. Que se 



Méthode du simplexe

Si un problème de programmation linéaire admet au moins une solution réalisable optimale finie il existe au moins une solution réalisable optimale de base.



LA PROGRAMMATION LINEAIRE : RESOLUTION ANALYTIQUE

Dans cette leçon nous abordons un algorithme de résolution d'un problème de programmation linéaire : l'algorithme du simplexe.



Programmation linéaire -- suite - Cas limites du simplexe

Apr 6 2007 Cas limites de la programmation linéaire. Limites de l'algorithme du simplexe. Solution unique. Solution multiple. Solutions non bornées.



L'algorithme du simplexe - HEC Montréal

Avant que l’algorithme du simplexe puisse être utilisé pour résoudre un programme linéaire ce programme linéaire doit être converti en un programme équivalent où toutes les contraintes technologiques sont des équations et toutes les variables sont non négatives a Contraintes de type



Programmation linéaire - Méthodes et applications

A une certaine itération du simplexe nous disposons d’une solution de base x B lié à un choixB devariablesdebase Ensuiteils’agitdepivoterversunesolutiondebaseadjacente quidoitêtreadmissible Lecritèreduquotientassurequelanouvellesolutiondebasesera admissible Ene?etnotonsparj lacolonnedepivotdel’étape1etpari



1 INTRODUCTION 2 AJOUT DES VARIABLES ARTIFICIELLES 3 L

simplexe en deux étapes La première étape dite Phase 1 consiste à éliminer les variables artificielles de la base (ou au moins à les rendre nulles) Si tel est le cas la phase II débute avec le dernier tableau de la phase I L’algorithme se poursuit en examinant des solutions réalisables de base au problème original selon les



174 EXERCICES SUPPLÉMENTAIRES — PARTIE II

sation sous contraintes linéaires s’appuie sur l’algèbre linéaire et l’analyse convexe L’èremoderned’optimisationmathématiqueoriginedestravauxdeGeorgeBernardDant-zig sur la programmation linéaire à la ?n des années 1940 Le chapitre 4 en présente les résultats principaux



Searches related to programmation linéaire simplexe PDF

Programmation linéaire Algorithme du simplexe Résolution de programmes linéaires par la méthode des tableaux du simplexe Soit le programme linéaire : max????=2????1+????2 Sous les contraintes x 1 0 x 2 0 et {????1?????2?3 ????1+22?6 ?????1+2????2?2 1-Rajouter les variables d’écart (positives ou nulles)

Comment fonctionne l’algorithme du simplexe ?

L’algorithme du simplexe est mis en œuvre selon deux méthodes, la méthode des dictionnaires et la méthode des tableaux. La première méthode permet de bien comprendre le déroulement du simplexe alors que la méthode des tableaux est plus algébrique et elle conduit à la mise en œuvre effective de l’algorithme du simplexe.

Qui a inventé le simplexe ?

Ce terme a été introduit pendant la Seconde Guerre mondiale et systématiquement utilisé à partir de 1947 lorsque G. Dantzig inventa la méthode du simplexe pour résoudre les problèmes de programmation linéaire.

Qu'est-ce que la méthode du simplexe?

1 - Principe Lorsque nous sommes en présence de plus de deux produits, la méthode du simplexe est la seule méthode permettant de trouver la combinaison de produits qui rend optimal la fonction économique.

Quels sont les sommets de la programmation linéaire ?

On a le graphique de trois régions colorées correspondant aux contraintes. La région de chevauchement est le quadrilatère marron avec un sommet à l’origine. Il s’agit de l’ensemble réalisable pour ce problème de programmation linéaire. D’après le graphique donné, on peut dire que les sommets sont ( 0, 0), ( 0, 4), ( 2, 3), ( 3, 0).

Chapitre 3 Méthode du simplexe

Chapitre 3

Méthode du simplexe

Comme toujours, on suppose queAune matrice de formatmnetb2Rm. On notera les colonnes deApar[a1;a2;:::;an]. Aussi, on fera l"hypothèse que le rang de la matriceAest

égal à m.

Selon le chapitre précédent, nous savons que la solution optimale du problème d"optimisation

linéairemaxz=ctx; Ax=b; x0:(3.1) se trouve en un sommet de l"ensemble convexe des solutions admissiblesK=fx0jAx= bg. De plus, nous savons que les sommets sont étroitement reliés aux solutions de base admis- sibles. Concrètement, cela signifie que si on choisit une liste de m variables dites de base B=fxj1;xj2;:::;xjmgassociées à des colonnesfaj1;aj2;:::;ajmgqui forment une base de l"espace-colonne, on peut calculer l"unique solution de bases du système Ax B=b en imposant que les variables hors-basexi= 0pour tous lesi6=j1;j2;:::;jm. SixB0, la

solution est admissible et sera appellée solution de base admissible ou réalisable. D"après le

chapitre précédent, la solution de basexBcorrespond à un sommet deK. Par conséquent, il suffit de calculer tous les sommets deKpour trouver la solution optimale.

Mais le nombre de sommets est de l"ordre

n!m!(nm)!ce qui est beaucoup trop pour desnetm relativement grands. Le principe de la méthode du simplexe est d"éviter de calculer tous les sommets. A partir d"un sommet donné, la méthode calculera une suite de sommets adjacents l"un par rapport au précédent et qui améliore la fonction objective.

3.1 Solutions de base adjacentes

Définition

3.1.1 Deux sommetsxetysont dits adjacents si les variables de base ne

diffèrent que d"un seul élément. 1

2CHAPITRE 3. MÉTHODE DU SIMPLEXE

Reprenons le problème modèle du premier chapitre écrit sous la forme canonique maxz= 5x1+ 4x2 x

1+x3= 6

x

1=4 +x2+x4= 6

3x1+ 2x2+x5= 22

x

1;x2;x3;x4;x50

Le sommetx= (4;5;2;0;0)correspond aux variables de basefx1;x2;x3g. De même, le sommety= (6;2;0;2:5;0)est associé aux variables de basefx1;x2;x4g. Les deux sommets sont adjacents ce qui est conforme au graphique de l"ensembleKprojeté dansR2.

Le système s"écrit

2 6

641 0 1 0 0

1=4 1 0 1 0

3 2 0 0 13

7 752
6 6664x
1 x 2 x 3 x 4 x 53
7

7775=2

6 646
6 223
7 75
Pour calculer la solution de base(4;5;2;0;0), il suffit d"extraire les 3 colonnes de la matriceA

et de résoudre le système carré par la méthode d"élimination de Gauss. Toutefois, lorsque que

l"on voudra calculer la nouvelle solution de base(6;2;0;2:5;0), il faudra recommencer l"éli- mination de Gauss avec les nouvelles colonnes de base. Il est plus avantageux de poursuivre élimination de Gauss à partir du premier calcul.

Voici un exemple de calcul.

a)

En premier, on forme la matrice augmen tée

2 6

641 0 1 0 0 6

1=4 1 0 1 0 6

3 2 0 0 1 223

7 75
b) On applique l"élimination de Gauss-Jordan p ourles v ariablesde base fx1;x2;x3g. 2 6

641 0 04=5 2=5 4

0 1 0 6=51=10 5

0 0 1 4=52=5 23

7 75
Donc x

1= 4 + 4=5x42=5x5

x

2= 56=5x4+ 1=10x5

x

3= 24=5x4+ 2=5x5

En posant les variables hors-basesx4=x5= 0, on obtient bien la solution de base x= (4;5;2;0;0).

3.2. MÉTHODE DU SIMPLEXE : PHASE II3

c) Main tenant,on désire calculer la solution de base adjacen tel iéesaux v ariablesd ebase fx1;x2;x4g. Pour cela, on poursuit l"élimination de Gauss-Jordan à partir du pivot a 3;42 6

641 0 1 0 0 6

0 13=2 0 1=2 2

0 0 5=4 11=2 5=23

7 75:
Donc x

1= 6x3

x

2= 2 + 3=2x31=2x5

x

4= 5=25=4x3+ 1=2x5

En posant les variables hors-basesx3=x5= 0, on obtient bien la solution de base y= (6;2;0;2:5;0). d) P oursuivonsà u nautre sommet adjacen tz= (6;0;0;4:5;4)dont les variables de base sontfx1;x4;x5g. Ce sommet est adjacent àymais pas àx. Poursuivons l"élimination de Gauss-Jordan à partir du pivota2;5 2 6

641 0 1 0 0 6

0 23 0 1 4

0 11=4 1 0 9=23

7 75:

On obtient les relations

x

1= 6x3

x

5= 42x2+ 3x3

x

4= 9=2x2+ 1=4x3

En posant les variables hors-basesx2=x3= 0, on obtient bien la solution de base z= (6;0;0;4:5;4). L"opération décrite ci-dessus est aussi connue sous le nom de pivotement. Cette stratégie sera à la base de la méthode du simplexe.

3.2 Méthode du simplexe : Phase II

Dans cette section, nous allons présenter la Phase II de la méthode du simplexe. La Phase

I qui sert plus à initialiser la Phase II, sera aborder plus tard. Cette phase s"applique à des

problèmes du type maxz=ptx; Cxb; x0:ouminz=ptx; Cxb; x0:(3.2)

4CHAPITRE 3. MÉTHODE DU SIMPLEXE

oùCest une matrice de formatmn. On fera l"hypothèse queb0. Cette supposition est cruciale pour la Phase II. Ceci garantie que02K=fx0jCxbg. De plus, nous savons que le point0est un sommet. Ce point servira de point de départ de l"algorithme du simplexe. En gros, l"algorithme va pivoter autour de ce point pour trouver un meilleur sommet. On poursuit l"algorithme jusqu"à l"obtention de la solution optimale.

La méthode débute avec la forme canonique du problème (3.2) que l"on écrira sous la forme

maxz=ctx; Ax=b; x0:(3.3) Attention, nous avons inclus les variables d"écart dans la liste des variables, i.e.x2Rm+n.

La matriceAetcsont données par

A= [C I]c=p

0

L"idée de base de la méthode du simplexe consiste à appliquer l"élimination de Gauss-Jordan

à partir du système augmenté obtenu en ajoutant au systèmeAx=bla relation linéaire z=ctxAx=b; c txz= 0 Ce système peut s"écrire sous la forme matricielle A0 c t1 x z =b 0

Nous allons illustrer la méthode sur l"exemple

maxz=x1+ 2x2 sous les contraintes 8< :2x1+x22; x

1+ 3x23;

x

1;x20:

Au préalable, on écrit le problème sous la forme canonique maxz=x1+ 2x2 sous les contraintes 8< :2x1+x2+x3= 2; x

1+ 3x2+x4= 3;

x

1;x2;x3;x40:

Voici les étapes de la méthode du simplexe.

3.2. MÉTHODE DU SIMPLEXE : PHASE II5

0.

I nitialisation

On choisit la solution de base admissible(0;0;2;3)comme point de départ de l"algo- rithme. Les variables de base sontfx3;x4get les variables hors-base sontfx1;x2g. Ce choix est toujours possible sib0.

On forme le tableau initialT.

2 6

642 1 1 0 0 2

1 3 0 1 0 3

1 2 0 01 03

7 75
1.

Choix de la colonne de piv ot

On doit aller vers un sommet adjacent pour lequel la valeur de la fonction objectivez en ce sommet est supérieure. Pour cela, on choisira la variablexiqui fera augmenter le plus rapidementz. C"est-à-dire que l"on choisit l"indiceiqui maximise@z@x i=ci>0. Dans notre cas, la fonctionzvarie plus rapidement en fonction de la variablex2. Donc, on choisit la deuxième colonne comme colonne de pivot. La variablex2entre dans la base mais une variable doit sortir. Remarque 3.2.1Si tous lesci0, la fonction objectivezne peut augmenter davantage. Donc nous avons trouver la solution optimale et l"algorithme se termine à cette étape. 2.

Choix de la lign ede piv ot

Quels sont les sommets adjacents de disponible et ayant la variablex2? Il y a 2 possibilités :fx2;x3getfx2;x4g. Essayons le choixfx2;x4g. Donc,x3quitte la base. La solution de base s"obtient à l"aide de l"élimination de Gauss-Jordan à partir du pivota12. On obtient : 2 6

642 1 1 0 0 2

5 03 1 03

3 02 0143

7 75
et la nouvelle solution de base sera(0;2;0;3)qui n"est pas admissible! Essayons de nouveau avecfx2;x3g. Donc,x4quitte la base. La solution de base s"obtient à l"aide de l"élimination de Gauss-Jordan à partir du pivota22. On obtient : 2 6

645=3 0 11=3 0 1

1=3 1 0 1=3 0 1

1=3 0 02=3123

7 75
et la nouvelle solution de base serax= (0;1;1;0)qui est admissible.

6CHAPITRE 3. MÉTHODE DU SIMPLEXE

On observe que la dernière ligne s"écrit

1=3x12=3x4z=2()z= 2 + 1=3x12=3x4:

Etant donné que les variable hors-base vérifiex1=x4= 0, on a quez= 2qui est la valeur de la fonction objective au sommetx= (0;1;1;0). 3.

On retourne à l"étap e1.

La dernière ligne du tableau~cxz=2fournie toujours la valeur dez= ~cx+ 2.

Même si les coefficients decont été modifiés, le principe de base de l"étape 1 s"applique.

C"est-à-dire que l"on choisit l"indiceiqui maximise@z@x i= ~ci>0. Dans notre cas, la fonctionzvarie plus rapidement en fonction de la variablex1. Donc, on choisit la première colonne comme colonne de pivot. La variablex1entre dans la base et une variable doit sortir. 4.

On retourne à l"étap e2.

Les sommets adjacents (ayant la variablex1de commun) sontfx1;x2getfx1;x3g.

Essayons avecfx1;x3g. On obtient :

2 6

6405 12 04

1 3 0 1 0 3

01 01133

7 75
et la nouvelle solution de base sera(3;2;4;0)qui n"est pas admissible! Essayons l"autre possibilité avecfx1;x2g. On obtient :2 6

641 0 3=51=5 0 3=5

0 11=5 2=5 0 4=5

0 01=53=51115

3 7 75
et la nouvelle solution de base sera(3=5;4=5;0;0)qui est admissible! 5.

On retourne à l"étap e1.

Dans ce cas, la solution sera optimale car les coefficients (pourx1àx4)de la dernière ligne sont tous négatifs ou nuls. On ne peut améliorer la solution en visitant d"autres sommets adjacents. La valeur dezest celle donnée au coin inférieure droit :z= 11=5 car il faut en changer le signe selon la relation~cxz=11=5. Remarque 3.2.2En premier lieu, on observe que l"avant dernière colonne est toujours inchangé. Cela est logique car cette colonne n"est jamais choisie comme colonne de pivot.

Son rôle est de fournir la valeur dez. Par conséquent, il est inutile d"écrire cette colonne.

Deuxièmement, il est évident que nous ne pouvons nous permettre d"explorer toutes les

possibilités pour le choix de la ligne de pivot à l"étape 2. Nous avons besoin d"un critère de

sélection.

Voici les étapes de la méthode du simplexe. Afin de ne pas nuire à la lisibilité du texte, nous

avons convenu de ne pas changer de notation pour la matriceAet des vecteursbetcen cours d"itération du simplexe. On notera parBle choix de la base à chaque étape du simplexe.

3.2. MÉTHODE DU SIMPLEXE : PHASE II7

Algorithme du simplexe

Étape 0 :

On forme le tableau initial Bx

1x2::: xnxn+1xn+2::: xn+mx

n+1a

11a12::: a1n1 0:::0b

quotesdbs_dbs28.pdfusesText_34
[PDF] recherche opérationnelle programmation linéaire exercices corrigés pdf

[PDF] exercices recherche operationnelle

[PDF] theme astral chinois complet gratuit interpretation

[PDF] cours recherche opérationnelle methode de simplexe

[PDF] recherche opérationnelle simplexe exercices corrigés

[PDF] livre recherche opérationnelle pdf

[PDF] cours et exercices corrigés de recherche opérationnelle+pdf

[PDF] inpes

[PDF] methode boscher pdf download

[PDF] méthode boscher cahier de lecture pdf

[PDF] methode boscher en ligne

[PDF] méthode boscher gratuit

[PDF] méthode boscher cahier des sons pdf

[PDF] adjectif pour acrostiche

[PDF] recherche qualitative définition