[PDF] Continuité et dérivabilité dune fonction





Previous PDF Next PDF



Dérivation des fonctions

Dérivabilité sur un intervalle. Opérations. Dérivation d'une réciproque. Extremum d'une fonction. Théorème de Rolle. Théorème des accroissements finis.



Chapitre I : Continuité et dérivabilité des fonctions réelles

Soit f une fonction continue sur un intervalle fermé [a ;b]. Alors pour tout réel ? compris entre f(a) et f(b)



Dérivabilité

Soit f une fonction définie sur un intervalle ouvert I et soit x0 ? I. • Si f est dérivable en x0 alors f?(x0) est le coefficient directeur de la tangente à 



Chapitre 3 Dérivabilité des fonctions réelles

3.1 Fonctions dérivables. Dans tout ce chapitre I désigne un intervalle non vide de R. Définition 3.1.1. Soit f : I ? R une fonction



Dérivabilité des fonctions Définition de la dérivabilité Sur un

Sur un intervalle. Les fonctions usuelles sont dérivables sur leur ensemble de définition ouvert. Si dans un énoncé on demande de montrer qu'une fonction est 



Continuité et dérivabilité dune fonction

7 nov. 2014 Définition 1 : Dire qu'une fonction f a pour limite ? en a signifie que tout intervalle ouvert contenant ? contient.



Dérivation

1.2 Dérivabilité à gauche et à droite . 2 Dérivabilité sur un intervalle. 5. 2.1 Définition et dérivabilité des fonctions de référence .



DÉRIVATION (Partie 2)

Définitions : Soit f une fonction définie sur un intervalle I. On dit que f est dérivable sur u et v sont deux fonctions dérivables sur un intervalle I.



Fonctions dérivables 1 Calculs

sur l'intervalle [ab] préciser le nombre “c” de ]a



Leçon 228: Continuité et dérivabilité des fonctions de la variable

26 déc. 2012 Si f est une fonction à valeurs réelles définie sur un intervalle compact [a b]



[PDF] Chapitre 3 Dérivabilité des fonctions réelles

Dans tout ce chapitre I désigne un intervalle non vide de R Définition 3 1 1 Soit f : I ? R une fonction et soit x0 ? I On dit que f est dérivable



[PDF] Dérivation des fonctions

On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I On note f la fonction dérivée de f qui à tout x ?I 



[PDF] IV Dérivabilité sur un intervalle

IV Dérivabilité sur un intervalle L'un des usages principaux de la dérivée f d'une fonction f : I ? R consiste à étudier les variations de f On



[PDF] Continuité et dérivabilité dune fonction - Lycée dAdultes

7 nov 2014 · Si f est dérivable sur un intervalle I alors la fonction f est continue sur I La réciproque de ce théorème est fausse



[PDF] Dérivation sur un intervalle

Soit f une fonction dérivable sur un intervalle I • f est constante sur I ?? f = 0 sur I • f est croissante sur I ?? f ? 0 



[PDF] Dérivabilité - MP Dumont

Une fonction dérivable en admet une tangente en et le nombre dérivé en est la pente de cette Proposition 1 3 Dérivabilité sur un intervalle



[PDF] Dérivabilité des fonctions

Sur un intervalle Les fonctions usuelles sont dérivables sur leur ensemble de définition ouvert Si dans un énoncé on demande de montrer qu'une fonction est 



[PDF] Chapitre I : Continuité et dérivabilité des fonctions réelles

- On reconnaît graphiquement qu'une fonction est continue sur un intervalle I si elle peut être tracée sans lever le crayon Corollaire 1 : L'image d'un 



[PDF] Résumé de cours et méthodes 1 Nombre dérivé - Fonction dérivée

Si f et g sont deux fonctions dérivables sur un intervalle I alors la fonction f +g est aussi dérivable sur I et (f +g) = f +g



[PDF] Cours de mathématiques Chapitre 4 : Dérivabilité - Melusine

22 nov 2008 · I Chapitre 4 : Fonctions dérivables I A Nombre dérivé fonction dérivée Définition 1: f est une fonction définie sur un intervalle I et a 

:
Continuité et dérivabilité dune fonction DERNIÈRE IMPRESSION LE7 novembre 2014 à 10:23

Continuité et dérivabilité d"unefonction

Table des matières

1 Continuité d"une fonction2

1.1 Limite finie en un point. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Continuité en un point. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Continuité des fonctions usuelles. . . . . . . . . . . . . . . . . . . . 3

1.4 Théorème du point fixe. . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Continuité et dérivabilité. . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Continuité et équation. . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Dérivabilité6

2.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Interprétations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Interprétation graphique. . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Interprétation numérique. . . . . . . . . . . . . . . . . . . . 8

2.2.3 Interprétation cinématique. . . . . . . . . . . . . . . . . . . 8

2.3 Signe de la dérivée, sens de variation. . . . . . . . . . . . . . . . . . 9

2.4 Dérivée et extremum local. . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Dérivées des fonctions usuelles. . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Dérivée des fonctions élémentaires. . . . . . . . . . . . . . . 11

2.5.2 Règles de dérivation. . . . . . . . . . . . . . . . . . . . . . . 11

2.5.3 Exemples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

PAULMILAN1 TERMINALES

TABLE DES MATIÈRES

1 Continuité d"une fonction

1.1 Limite finie en un point

Définition 1 :Dire qu"une fonction

fa pour limite?ena, signifie que tout intervalle ouvert contenant?contient toutes les valeurs def(x)pourxassez proche dea- c"est à dire pour lesxd"un intervalle]a-η;a+η[. On note alors : lim x→af(x) =? a a+ηa-ηC f O?? Remarque :Parfois la fonctionfn"admet pas une limite ena, mais admet une limite à droite et une limite à gauche. C"est le cas de la fonction partie entièreE (voir plus loin). On a par exemple : limx→2-E(x) =1 et limx→2+E(x) =2

1.2 Continuité en un point

Définition 2 :Soit une fonctionfdéfinie sur un intervalle ouvert I. Soitaun élément de I. On dit que la fonctionfestcontinueenasi et seulement si : lim x→af(x) =f(a) La fonctionfestcontinue sur un intervalle Isi, et seulement si,fest continue en tout point de I. Remarque :Graphiquement, la continuité d"une fonctionfsur un intervalle I se traduit par une courbe en un seul morceau. 123

1 2 3 4 5-1

]Cf O

Fonctionfdiscontinue en 2

limx→2+f(x) =3?=f(2) 123

1 2 3 4 5-1

Cf O

Fonctionfcontinue sur[-1,5; 5,5]

La fonction de gauche représente une discontinuité par "saut". C"est le cas par exemple de la fonction partie entière ou plus pratiquement de la fonction qui représente les tarifs postaux en fonction du poids (brusque changement de tarif entre les lettres en dessous de 20 g et de celles entre 20 g et 50 g).

PAULMILAN2 TERMINALES

1. CONTINUITÉ D"UNE FONCTION

D"autres discontinuités existent. C"est par exemple le cas en 0 de lafonctionf définie parf(x) =sin1 xpourx?=0 etf(0) =0. ?x?R,?n?Z,n?xLafonction partie entièreEest alors définie par :E(x) =n

E(2,4) =2 ;E(5) =5 ;E(-1,3) =-2

On observe alors un "saut" de la fonction pour

chaque entier. La fonction partie entière n"est donc pas continue pourxentier. 123
-1 -21 2 3 4-1-2 O

Soit la fonctionfdéfinie par :???f(x) =sin1

xpourx?=0 f(0) =0

La fonctionfn"est pas continue en 0 bien qu"on

n"observe ici aucun "saut". La fonction oscille de plus en plus autour de 0 si bien qu"au voisi- nage de 0, la fonction tend vers une oscillation infinie qui explique la non continuité. 1 -11-1O

1.3 Continuité des fonctions usuelles

Propriété 1 :Admis

•Les fonctions polynômes sont continues surR. •La fonction inversex?→1xest continue sur]-∞;0[et sur]0;+∞[ •La fonction valeur absoluex?→ |x|est continue surR. •La fonction racine carréex?→⎷xest continue sur[0;+∞[ •Les fonctionsx?→sinxetx?→cosxsont continues surR •D"une façon générale, toutes fonctions construites par opération ou par com- position à partir des fonctions ci-dessus sont continues sur leur ensemble de définition, en particulier les fonctions rationnelles.

1.4 Théorème du point fixe

Théorème 1 :Théorème du point fixe

Soit une suite(un)définie paru0etun+1=f(un)convergente vers?. Si la fonction associéefest continue en?, alors la limite de la suite?est solution de l"équationf(x) =x.

PAULMILAN3 TERMINALES

TABLE DES MATIÈRES

Démonstration :

On sait que la suite(un)est convergente vers?donc : limn→+∞un=? De plus, la fonctionfest continue en?donc : limx→?f(x) =f(?)

Par composition, on en déduit que : lim

n→+∞f(un) =f(?)?limn→+∞un+1=f(?) or lim Exemple :Reprénons l"exemple du chapitre 2, soit la suite(un) ?u0=0 u n+1=? 3un+4 On a montré que la suite(un)était positive, croissante et majorée par 4, elle est donc convergente vers?. La fonctionx?→⎷

3x+4 est continue sur[0;4], donc?

est solution de l"équationf(x) =x.

3x+4=xon élève au carré

3x+4=x2

x

2-3x-4=0

Cette équation a-1 et 4 comme solution. Or on sait queun?0. On en déduit que la seule solution acceptable est 4. La suite(un)converge vers 4.

1.5 Continuité et dérivabilité

Théorème 2 :Admis

•Sifest dérivable enaalors la fonctionfest continue ena. •Sifest dérivable sur un intervalle I alors la fonctionfest continue sur I. ?La réciproque de ce théorème est fausse Remarque :Laréciproquedecethéorèmeestfausse.Pours"enrendrecompte,on peut s"appuyer surunereprésentation graphique.Siunefonction est continuesur un intervalle, sa représentation graphique est en un seul morceau. Sila fonction est dérivable, sa représentation graphique admet une tangente en chacun de ses points. Un petit exemple :

La fonction dont la représentation est

ci-contre, est bien continue ena, car la courbe est en un seul morceau.

Par contre, la fonction n"est pas déri-

vable ena, car la représentation admet au point A deux demi-tangentes.

Onditquelacourbeadmetunpointan-

guleux A O a?

PAULMILAN4 TERMINALES

1. CONTINUITÉ D"UNE FONCTION

La fonction valeur absoluex?→ |x|est continue mais pas dérivable en 0.

1.6 Continuité et équation

Théorème 3 :Théorème des valeurs intermédiaires Soit une fonctioncontinuesur un intervalle I= [a,b]. Pour tout réelkcompris entref(a)etf(b), il existe un réelc?I tel quef(c) =k.

Remarque :Ce théorème est admis.

Ce théorème résulte du fait que l"image

d"un intervalle deRpar une fonction continue est un intervalle deR

Voici une illustration graphique. Icik

est bien compris entref(a)etf(b).

L"équationf(x) =kadmet donc des so-

lutions.

Le fait quecexiste ne veut pas dire

qu"il soit unique. Dans notre exemple, il existe ainsi trois valeurs pourc. abf(a) f(b)k c

1c2c3O

Théorème 4 :Théorème des valeurs intermédiaires bis Soit une fonctionfcontinue et strictement monotonesurI= [a,b]. Pour tout réelkcompris entref(a)etf(b), l"équationf(x) =ka une unique solution dans I= [a,b] Démonstration :L"existence découle du théorème précédent, et l"unicité de la monotonie de la fonction.

Remarque :

•On généralise ce théorème à l"intervalle ouvertI=]a,b[.kdoit alors être com- pris entre limx→af(x)et limx→bf(x) •Lorsquek=0, on pourra montrer quef(a)×f(b)<0.

•Ce théorème est parfois appelé le théorème de la bijection car lafonction réalise

une bijection de I surf(I). •Un tableau de variation pourra être suffisant pour montrer la continuitéet la monotonie de la fonction. Exemple :Soit la fonctionfdéfinie surRpar :f(x) =x3+x-1. Montrer que l"équationf(x) =0 n"admet qu"une solution surR. On donnera un enca- drement à l"unité de cette solution. Trouver ensuite, à l"aide d"un algorithme un encadrement à 10 -6de cette solution.

PAULMILAN5 TERMINALES

TABLE DES MATIÈRES

123
-1 -20.5 1.0 1.5 Oα

La fonctionfest une fonctioncontinuesurRcarf

est un polynôme.

La fonctionfest la somme de deux fonctions crois-

santesx?→x3etx?→x-1, doncfeststrictement croissantesurR.

On af(0)=-1 etf(1)=1?f(0)×f(1)<0

donc d"après le théorème des valeurs intermé- diaires, la fonctionfadmet un uniqueα?[0,1] tel quef(α) =0.

Algorithme :Un algorithme utilisant le

principe dedichotomie(on divise l"intervalle en deux et on réitère l"opération) permet de trouver une approximation deαà la précision demandée. On pose :

•AetBles bornes de l"intervalle.

•Pla précision (entier positif).

quotesdbs_dbs33.pdfusesText_39
[PDF] dérivabilité et continuité

[PDF] dérivabilité en 0

[PDF] dérivabilité ? gauche et ? droite

[PDF] étudier la dérivabilité d'une fonction sur un intervalle

[PDF] la dérivabilité cours

[PDF] exercice dérivabilité en un point

[PDF] exercices dérivabilité terminale

[PDF] fonction non dérivable

[PDF] exercices dérivabilité mpsi

[PDF] fonction dérivable en 0

[PDF] progression spiralée maths première s

[PDF] dérivées usuelles

[PDF] dérivé de

[PDF] exercices dérivées 1ere sti2d

[PDF] derivee 1sti2d