[PDF] [PDF] Calcul Algébrique Une double somme est une





Previous PDF Next PDF



CALCULS ALGÉBRIQUES Sommes et produits finis Changements

Exercice 2 : Démontrez que pour tout entier naturel n ? N et en développant le second membre



sommes-doubles-finies.pdf

On appelle somme double finie toute somme de la forme. . j n. i l. i j Calculer







sommes.pdf

Remarque. J'éviterai de dé nir une somme S = i. ? k=j xk où on aurait i<j car ce serait ambigu à cause de deux interprétations incompatibles suivantes : 2 



Sommes et produits

somme partielle jusqu'à k. 0 q0 = 1. 1. 1 q1 = q. 1 + q. 2 On utilise souvent une des lettres i j ou k comme indice. ... La somme double.



Calculs algébriques

Une somme double dont le domaine de sommation porte sur des indices entiers i et j vérifiant une inégalité du type i ? j ou i<j est dite triangulaire.



Sommes Doubles 1 Sommes finies

uij est un réel appelé terme d'indice (i



Sommes et séries

1?i<j?n aij = n?1. ? i=1 n. ? j=i+1 aij = n. ? j=2 j?1. ? i=1 aij. Propriété 9 (Somme double indexée par un triangle). Preuve.



CPGE Brizeux

(k p. ) = (n + 1 p + 1. ) . Exercice 2. Une somme double. 1. Soit (n q) ? N × C. • 



[PDF] 02 doubles sommationspdf

Dans de tels cas on dit que la somme double est "sommée d'abord sur k" Une somme qui dépend de plus d'un indice peut être sommée d'abord sur n'importe lequel 



[PDF] Calculs de sommes doubles

Nous pouvons réécrire la somme S sous la forme : n ? i=1 n ? j=1 min(i j) par définition même du min(i j) nous choisissons d'écrire S :



[PDF] CALCULS ALGÉBRIQUES Sommes et produits finis

et en développant le second membre retrouvez la valeur de la somme S1 = n ? k=0 k 2 Utilisez une méthode analogue pour retrouver les valeurs des sommes



[PDF] Sommes doubles - Anthony Mansuy

On les réorganise en ”commençant” par j: 2 ? j ? n et 1 ? i ? j ? 1 On en déduit que la somme double s'écrit : n ? j=2



[PDF] sommespdf - Pascal Ortiz

10i + 2 lorsque l'indice i prend toute les valeurs entières entre 4 et 8 ces deux valeurs On a obtenu une somme emboîtée (je dirai aussi double somme)



[PDF] Sommes doubles

But: Calculer cette somme double ? 1?ij?n 2 Calcul de sommes doubles Dans ce paragraphe A est de la forme: A = {(i j) ? [1n]2 /i = j}



[PDF] Sommes doubles finies - WordPresscom

On appelle somme double finie toute somme de la forme j n i l i j Calculer pourn etm deux entiers naturels non nuls les sommes suivantes :



[PDF] Calcul Algébrique

Une double somme est une somme de sommes et on peut toujours intervertir les deux Voici un enchaînement d'égalités montrant que la somme des puissances 



[PDF] Sommes doubles - WordPresscom

Il y a globalement deux cas à savoir maîtriser : les sommes doubles sur un 7 2 SOMME DOUBLE SUR UN TRIANGLE i \ j 1 2 j p 1 a11 a12



Exercices corrigés -Calculs algébriques - sommes et produits

Soit $(a_{ij})_{(ij)\in\mathbb N^2}$ une suite double de nombres réels Soit $n$ et $m$ deux entiers naturels Intervertir les sommes doubles suivantes : $S_1 

  • Comment calculer la somme double ?

    On commence par se mettre sur la rangée correspondante à j = 1 et on somme toutes les cases de cette rangée en commen?nt par la case de gauche correspondante à i = 1. Une fois les éléments de la colonne j = 1 sommés, on passe à la rangée j = 2 et on somme les cases à partir de la case i = 1.
  • Qu'est-ce qu'une double somme ?

    Observez que la borne peut être une des variables de la quantité à sommer. Une double somme est une somme de sommes, et on peut toujours intervertir les deux.
  • Comment calculer la somme de K ?

    k = n (n + 1) 2 . La variable k est appelée indice de la somme; on utilise aussi fréquemment la lettre i comme variable d'indice.
  • un changement par décalage d'indice : on pose l = k + j ?? k = l ? j où k est un entier fixé. un changement où on inverse l'ordre d'énumération : on pose l = n ? k ?? k = n ? l. Après un changement d'indice, le nombre de termes dans la somme doit rester inchangé

Université Joseph Fourier, Grenoble I

Mathématiques, Informatique et Mathématiques Appliquées Licence Sciences et Technologies1eannéeCalcul Algébrique

Eric Dumas, Emmanuel Peyre, Bernard Ycart

Ce chapitre est consacré à la manipulation de formules algébriques, constituées de variables formelles, de réels ou de complexes. L"objectif est essentiellement pratique : " savoir calculer ». La seule nouveauté réside dans la manipulation de formules avec indices, utilisant les symboles?(somme) et?(produit). Pour le reste, vous aurez simplement à réviser votre cours de terminale sur les nombres complexes.

Table des matières

1 Cours 2

1.1 Sommes et produits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Trois formules à connaître . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Formes trigonométrique et exponentielle . . . . . . . . . . . . . . . . . 13

1.5 Géométrie du plan complexe . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Entraînement 17

2.1 Vrai ou faux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 QCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Corrigé du devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Compléments 37

3.1 Les formules de Ramanujan . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Le Rapido . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Si non è vero, è bene trovato . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 La marquise de Tencin . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Equations résolubles par radicaux . . . . . . . . . . . . . . . . . . . . . 42

Maths en L

1gneCalcul AlgébriqueUJF Grenoble1 Cours

1.1 Sommes et produits

Nous commençons par les sommes.

L"écriture

5? k=02k se lit "somme pourkallant de zéro à cinq de deux puissancek». C"est une notation abrégée pour : 2

0+ 21+ 22+ 23+ 24+ 25.

La lettrekest l"indice de sommation. On la remplace successivement par toutes les valeurs entières comprises entre les deuxbornes, qui sont0et5dans notre exemple. La première borne, celle qui est écrite au-dessous du signe somme, sera toujours inférieure ou égale à celle qui est au-dessus. Les bornes peuvent elles-mêmes être des variables, mais elles sont nécessairement différentes de l"indice de sommation. Par exemple, pour tout entier natureln:n? k=02k désigne la somme 2

0+ 21+ 22+ 23+···+ 2n-1+ 2n.

Rappelons que, par convention,a0= 1pour tout nombre réela. Prenez l"habitude d"écrire les sommes sous forme développée quitte à introduire des points de suspension entre les premiers termes et les derniers. Voici quelques exemples d"égalités illustrant la manipulation des indices et des bornes. Nous donnons sous chaque exemple une

écriture sous forme développée.

n k=12k=n-1? h=02h+1 2

1+···+ 2n= 20+1+···+ 2n-1+1.

L"indice de sommation peut être remplacé par n"importe quel autre : on dit que c"est unevariable muette. n k=02k+n h=12n+h=2n? k=02k (2

0+···+ 2n) + (2n+1+···+ 22n) = 20+···+ 22n.

Observez que la borne peut être une des variables de la quantité à sommer. n k=02n= (n+ 1)2n 2 n+···+ 2n= (n+ 1)2n. 2

Maths en L

1gneCalcul AlgébriqueUJF GrenobleDans cet exemple la quantité à sommer ne dépend pas de l"indice de sommation : celle-

ci a pour seul effet de compter les termes. Attention, pourm6n, il y an-m+ 1 termes dans la somme demàn. n k=01 h=02k+h=1 h=0n k=02k+h (2

0+ 21) +···+ (2n+ 2n+1) = (20+···+ 2n) + (21+···+ 2n+1).

Une double somme est une somme de sommes, et on peut toujours intervertir les deux. Voici un enchaînement d"égalités, montrant que la somme des puissances de2de20 jusqu"à2nvaut(2n+1-1)(c"est un cas particulier d"une formule à connaître que nous verrons plus loin). Pour chaque ligne de calcul, nous donnons à droite l"écriture sous forme développée. On rappelle que20= 1. n k=02k= 2? n? k=02k? n? k=02k?= 2(2

0+···+ 2n)-(20+···+ 2n)

n? k=02k+1? n? k=02k?= (2

1+···+ 2n+1)-(20+···+ 2n)

n+1? h=12h? n? k=02k?= (2

1+···+ 2n+1)-(20+···+ 2n)

= 2 n+1-20= 2 n+1-1. Ce que nous venons de voir pour les sommes s"applique aussi aux produits. Le produit des entiers de1ànintervient dans de nombreuses formules. C"est lafactorielle den. Elle se note "n!». n! =n k=1k= 1 2 3···(n-2) (n-1)n . Il est souvent utile d"étendre la définition de la factorielle en convenant que0! = 1. Voici les premières valeurs.n0 1 2 3 4 5 6 7 8 9 10 n!1 1 2 6 24 120 720 5040 40320 362880 3628800 Sinest un entier positif, unn-upletdésigne une liste ordonnée denobjets. On appellepermutation des nombres de1ànunn-uplet d"entiers(u1,...,un)dans lequel chaque entier entre1etnapparaît une et une seule fois. Par exemple(5,3,2,4,1)est une permutation des nombres de1à5. Théorème 1.Le nombre de permutations des nombres de1ànestn!. Démonstration: On montre le théorème par récurrence surn. 3

Maths en L

1gneCalcul AlgébriqueUJF GrenobleSin= 1, la seule permutation des entiers de1à1est(1).

On suppose donc que le résultat est vrai pour l"entiern. Montrons-le pour l"entier n+1. Soitkun entier tel que16k6n+1et comptons le nombreAkde permutations (u1,...,un+1) telles queuk=n+ 1. À une telle permutation, associons len-uplet : (u1,...,uk-1,uk+1,...,un+1). C"est une permutation des nombres de1àn. Inversement étant donnée une permutation (v1,...,vn)des entiers de1àn, alors (v1,...,vk-1,n+ 1,vk+1,...,vn) est une permutation des entiers de1àn+ 1dont lek-ième terme estn+ 1. En appliquant l"hypothèse de récurrence, on obtient queAk=n!. Donc le nombre total de permutations des nombres de1àn+ 1est : n+1? k=1A k=n+1? k=1n! = (n+ 1)n! = (n+ 1)!. ce qui montre le résultat pourn+ 1. Pour ordonnernobjets, il faut associer à chacun un nombre entre1etnde sorte que chaque nombre renvoie à un objet et un seul. Il y a autant de manières de le faire que de permutations desnpremiers entiers :n!. Au tiercé, il y a5! = 120manières d"ordonner les 5 premiers chevaux. Une seule donne l"ordre d"arrivée, soit le quinté dans l"ordre, et il y a119quintés dans le désordre. Lenombre de combinaisonsdekobjets parminest le nombre de manières de choisir kobjets parmin, sans distinguer leur ordre. ?n k? =n!k!(n-k)!.(1)

La notation

?n k?que nous utilisons ici, de préférence à l"ancienne notationCkn, est conforme aux programmes en vigueur et à l"usage international. Nous conseillons de la lire " denchoisirk». La formule (1) correspond au raisonnement suivant. Pour choisirkobjets, on peut se donner une permutation desnobjets, et décider d"en retenir leskpremiers. Parmi les permutations, toutes celles qui auront en commun leurskpremiers nombres conduiront au même choix. Il faut donc diviser par le nombre de permutations deskobjets choisis, et par le nombre de permutations desn-kobjets qui ne l"ont pas été. Observez que (1) ne change pas si on remplacekparn-k. ?n k? =?n n-k? 4

Maths en L

1gneCalcul AlgébriqueUJF GrenobleChoisirkobjets parmin(ceux que l"on garde) revient à en choisirn-k(ceux que l"on

laisse).

Voici une autre expression de?n

k?. ?n k? =1k!k-1? h=0(n-h) =n(n-1)···(n-k+ 1)1 2···k.(2) Notez qu"il y akfacteurs au numérateur, comme au dénominateur. On obtient cette formule en simplifiant le quotientn!/(n-k)!dans (1). On peut aussi raisonner comme suit. Il y anfaçons de choisir le premier objet, puisn-1de choisir le second (puisqu"un objet a déjà été choisi), etc. Pour choisir le k-ième objet, il resten-(k-1)possibilités. Ceci correspond au numérateur de (2). Cette manière de procéder retourne une liste ordonnée. Il faut donc diviser par le nombre d"ordres possibles deskobjets choisis, qui estk!. Observez les relations suivantes, faciles à déduire de (1) ou (2) et de la définition de la factorielle. ?n k? =nk n-1 k-1? =n-k+ 1k n k-1?

Pour calculer

?n k?en pratique, on n"utilise ni (1) ni (2). Le calcul récursif par la formule dutriangle de Pascal(connue des chinois bien avant Pascal) est beaucoup plus rapide.?n k? =?n-1 k? +?n-1 k-1? .(3) Nous conseillons au lecteur de démontrer cette formule à partir des expressions (1) et (2). Voici la justification combinatoire. Supposons que parmi lesnobjets dontk doivent être choisis, l"un d"entre eux soit distingué (disons qu"il est rouge). Parmi les choix possibles dekobjets, certains ne contiennent pas l"objet rouge, d"autres le contiennent. Les premiers sont au nombre de?n-1 k?, car leskobjets sont choisis parmi lesn-1différents de l"objet rouge. Les choix contenant l"objet rouge sont au nombre de?n-1 k-1?car l"objet rouge ayant été retenu, il restek-1objets à choisir parmi lesn-1 autres. Voici, disposées en triangle, les valeurs de?n k?pournallant de0à6. n\k0 1 2 3 4 5 6 01 11 1

21 2 1

31 3 3 1

41 4 6 4 1

51 5 10 10 5 1

61 6 15 20 15 6 1

Chaque valeur est la somme de celle qui est au-dessus, et de celle qui est à gauche de celle qui est au-dessus. S"il n"est pas indispensable de connaître ce tableau par coeur, il est souvent utile de savoir le réécrire rapidement. 5

Maths en L

1gneCalcul AlgébriqueUJF Grenoble1.2 Trois formules à connaître

Les formules données par les trois théorèmes qui suivent vous seront souvent utiles. Théorème 2.Pour tout entiern>1, la somme desnpremiers entiers vaut n(n+ 1)/2. n?quotesdbs_dbs4.pdfusesText_8
[PDF] somme double max(i j)

[PDF] exercice statique analytique

[PDF] cours mecanique statique pdf

[PDF] exercice statique graphique

[PDF] cours de statistique appliquée ? léconomie pdf

[PDF] statistiques ? deux variables exercices corrigés bac pro

[PDF] exercice fréquence cumulée croissante

[PDF] exercices corrigés sur lexcrétion urinaire 5eme

[PDF] exercices corrigés sur l excrétion urinaire pdf

[PDF] seuil de rupture definition

[PDF] exercice offre globale demande globale

[PDF] poussée d archimède exercice corrigé iceberg

[PDF] exercice pression hydrostatique 3eme secondaire

[PDF] exercices d archimède

[PDF] exercices corrigés sur la production de lénergie électrique pdf