[PDF] Mesure et Intégration 6.3 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67. 7





Previous PDF Next PDF



examens-corriges-integration.pdf

puisque Jordan n'a pas fait la bêtise de ne pas attribuer 1 comme mesure — et comme mesure extérieure! 10. Corrigé de l'examen 5. 67. Par conséquent : ∫ ∞ a.



cours mesure et integration.pdf

Licence. Durée 2 h 08h30–. 10h30. Examen de Mesure et Intégration. Soit (E



Recueil des examens Mesures et Intégration

11 нояб. 2014 г. 1. (a +bn)2 où λ désigne la mesure de Lebesgue sur ]0+∞[. Exercice 3 : 10pts. Soit (X



Exercices corrigés

3 Année Licence Mathématiques Mesure et Intégration. Exercices corrigés Exercice 10. Soit f une fonction mesurable de E vers R+ i. e. f ∈ M(E



Mesure et Intégration

[7] Cours et exercices en mesure et intégration 3ème année licence réalisé par Mr Medeghri [10] Guilhem Coq : Théorie de la mesure (Exercices corrigés) ...



Intégration et probabilités (cours + exercices corrigés) L3 MASS

Le but de ce cours est d'introduire les notions de théorie de la mesure qui seront utiles en calcul des probabilités et en analyse.



Exercices corrigés

Licence de mathématiques 3e année. Mesure et intégration. Année –. Exercices b) A2 := {12n + 10−n. 3n + 2. ; n ∈ N. } ; c) A3 := {(. 1 + sin. ( n π. 2. )).



Intégration Exercices et Corrigés

mesure de Lebesgue est 10(b − a)/10 = b − a = λ([a b]). Donc f∗λ = λ ◦ f−1 coıncide avec λ sur le π-syst`eme formé par les intervalles. De plus



Exercices corrigés pour le cours de Licence de Mathématiques

INTÉGRATION Feuille d'exercices 2. Exercice 2.1. Montrer que la fonction exercices 4.9-10 et remarquer également que si 1 ≤ p < q ≤ +∞ et χ ∈. C0.



examens-corriges-integration.pdf

Soit m la mesure de Lebesgue sur R et soit ? > 0 arbitrairement petit. 10. Corrigé de l'examen 5. Exercice 1. (a) Faisons ? := 1 prenons n := N(1)



Exercices corrigés

3 Année Licence Mathématiques Mesure et Intégration. Exercices corrigés 1 ? 1=0 si µ(A)=1 ou bien. 1 ? 0=1 si µ(A)=0. . 10 ...



Exercices corrigés

Licence de mathématiques 3e année. Mesure et intégration. Année –. Exercices corrigés. Exercice # . Déterminer les bornes sup et inf des ensembles 



Intégration et probabilités (cours + exercices corrigés) L3 MASS

10. CHAPITRE 2. THÉORIE DE LA MESURE. 2.4 Fonctions mesurables et intégrales. 2.4.1 Intégrales des fonctions mesurables positives. Définition 2.4.1.



Mesure et Intégration

Polycopié de cours. Mesure et Intégration. Cours et exercices d'applications. Réalisé par : MENAD Abdallah. Troisième année licence Mathématiques LMD.



Exercices corrigés pour le cours de Licence de Mathématiques

On pourra également consulter l'exercice 2 du 14/11/1998 dans le para- graphe examens corrigés. Exercice 2.10. Soit (XM



Recueil des examens Mesures et Intégration

11 nov. 2014 1. (a +bn)2 où ? désigne la mesure de Lebesgue sur ]0+?[. Exercice 3 : 10pts. Soit (X



Mesure et Intégration Examen Final – Corrigé 13 janvier 2014

13 janv. 2014 Mesure et Intégration. Examen Final – Corrigé. 13 janvier 2014 — durée 3 h. Notations. (a) ?n est la mesure de Lebesgue dans Rn.



Mesures et Intégration

30 avr. 2008 Ak. ) = ?(?)=0. 16. Page 17. Exercices. 7.1) Soit (XA) un espace mesurable ...



Mesure et Intégration

10. Montrer qu'un ensemble E ? R est mesurable si et seulement si on peut l'écrire comme la réunion disjointe d'un ensemble de mesure nulle.



[PDF] examens-corriges-integrationpdf

Examens corrigés François DE MARÇAY Département de Mathématiques d'Orsay Université Paris-Sud France 1 Examen 1 Exercice 1 [Inégalité de Tchebychev] 



[PDF] Recueil des examens Mesures et Intégration

11 nov 2014 · 1 (a +bn)2 où ? désigne la mesure de Lebesgue sur ]0+?[ Exercice 3 : 10pts Soit (XMµ) un espace mesuré et f : X × 



Examens corrigés de Théorie de la mesure et de lintégration

EXAMENS AVEC CORRIGES ET DES CONTROLES CONTINUES TRAVAUX DIRIGES DE MODULE INTEGRATION filière SMIA S5 PDF Mathématiques SMIA semestre 5 integration 



[PDF] Théorie de la mesure et intégration Université de Genève Printemps

Théorie de la mesure et intégration Université de Genève Printemps 2020 Section de Mathématiques Série 1 Correction (corrigée le 26/02/2020)



[PDF] Exercices corrigés

Licence de mathématiques 3e année Mesure et intégration Année – Exercices corrigés Exercice # Déterminer les bornes sup et inf des ensembles 



[PDF] Mesure et Intégration Examen Final – Corrigé 13 janvier 2014

13 jan 2014 · (a) ?n est la mesure de Lebesgue dans Rn (b) L1(Rn) est l'ensemble des fonctions boréliennes et ?n-intégrables dans Rn Question 1



[PDF] Exercices corrigés - opsuniv-batna2dz

3 Année Licence Mathématiques Mesure et Intégration Exercices corrigés 1 ? 1=0 si µ(A)=1 ou bien 1 ? 0=1 si µ(A)=0 10 



[PDF] Intégration Exercices et Corrigés - ceremade

Licence de mathématiques Télé-enseignement 10 Tribu image réciproque 10 11 Tribu image directe Intégration par rapport `a une mesure image



[PDF] Mesure et Intégration - Département de mathématiques et statistique

10 Montrer qu'un ensemble E ? R est mesurable si et seulement si on peut l'écrire comme la réunion disjointe d'un ensemble de mesure nulle



[PDF] Intégration et probabilités (cours + exercices corrigés) L3 MASS

10 2 4 2 Intégrales des fonctions mesurables de signe quelconque Le but de ce cours est d'introduire les notions de théorie de la mesure qui seront 

:
Mesure et Intégration

MESURE ET INT´EGRATION

EN UNE DIMENSION

Notes de cours

Andr´e Giroux

D´epartement de Math´ematiques et Statistique

Universit´e de Montr´eal

Mai 2004

Table des mati`eres1 INTRODUCTION21.1 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 ENSEMBLES MESURABLES52.1 Mesure ext´erieure. . . . . . . . . . . . . . . . . . . . . . . . .52.2 Ensembles mesurables. . . . . . . . . . . . . . . . . . . . . .82.3 Mesure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122.4 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . .153 FONCTIONS MESURABLES173.1 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . .214 INT´EGRATION234.1 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . .355 ESPACES DE LEBESGUE395.1 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . .496 D´ERIVATION536.1 Fonctions `a variation born´ee. . . . . . . . . . . . . . . . . . .536.2 Fonctions absolument continues. . . . . . . . . . . . . . . . .626.3 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . .677 INT´EGRATION ABSTRAITE707.0.1 Le mod`ele probabiliste. . . . . . . . . . . . . . . . . .767.1 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . .798 INT´EGRALES IT´ER´EES818.1 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . .899 APPLICATIONS919.1 S´erie de Fourier. . . . . . . . . . . . . . . . . . . . . . . . . .919.2 Transform´ee de Fourier. . . . . . . . . . . . . . . . . . . . . .1009.3 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . .1101

1 INTRODUCTION

L"aire d"un rectangleRde cˆot´esaetbestab, par d´efinition. Lorsque aetbsont des entiers, cette aire est ´egale au nombre de carr´es de cˆot´e unit´e n´ecessaires pour recouvrirR. L"aire du triangle rectangle de baseaet de hauteurbest bien ´evidemmentab/2. On en d´eduit l"aire d"un triangle quelconque puis, par triangulation, celle d"un polygone arbitraire. Le calcul de l"aire d"un domaineDd´elimit´e par des courbes plus com- plexes, par exemple des arcs de cercle ou des segments de parabole, n´ecessite un passage `a la limite. Dans le cas o`uDest d´etermin´e par le graphe d"une fonctionfcontinue et positive sur un intervalle compact [a,b]1,

D={(x,y)|a≤x≤b ,0≤y≤f(x)},

consid´erons avec Riemann une partitionPde l"intervalle [a,b] : P={x0,x1,x2,...,xn}o`ua=x0< x1< x2<···< xn=b.

Alors la somme sup´erieure

S(f,P) =n?

k=1sup{f(x)|xk-1≤x≤xk}(xk-xk-1) fournit une borne sup´erieure pour l"aire requise et la somme inf´erieure s(f,P) =n? k=1inf{f(x)|xk-1≤x≤xk}(xk-xk-1) en fournit une borne inf´erieure. En utilisant les propri´et´es des fonctions continues sur les intervalles compacts, on montre que inf{S(f,P)| P}= sup{s(f,P)| P} et c"est cette valeur commune que l"on prend pour mesure de l"aire du do- maineD. On exprime ceci en disant que la fonctionfest int´egrable au sens de Riemann sur l"intervalle [a,b], d"int´egrale b a

f(x)dx= inf{S(f,P)| P}= sup{s(f,P)| P}.1[a,b] d´esigne un intervalle contenant ses extr´emit´es, ]a,b[ d´esigne un intervalle ne

contenant pas ses extr´emit´es et (a,b) d´esigne un intervalle contenant peut-ˆetre ses extr´emit´es.2 Lorsque la fonctionfn"est pas continue, il n"est plus certain qu"elle soit int´egrable au sens de Riemann, mˆeme si elle est positive et born´ee. Un exemple d"une telle fonction est fourni par la fonction indicatrice des nombres rationnelsf=IQ, d´efinie par I

Q(x) =?1 six?Q

0 sinon,

qui n"est int´egrable sur aucun intervalle [a,b] puisque l"on a toujours

S(IQ,P) =b-a , s(IQ,P) = 0.

On peut essayer d"´elargir la classe des fonctions int´egrables, et ceci est l"objet de notre cours, en consid´erant avec Lebesgue des partitions de l"axe des ordonn´ees plutˆot que des partitions de l"axe des abscisses. Nous ´etendrons d"abord la notion de longueur d"un intervalle,

λ([a,b]) =b-a,

`a une classe plus vaste d"ensembles (nous les nommerons : ensembles me- surables et la longueur g´en´eralis´ee : mesure). Nous consid´ererons alors la somme m(f) =m? k=0kmλ(Ek) o`u E k=? x|km≤f(x)