[PDF] PC 5 – Calcul de lois & Vecteurs gaussiens





Previous PDF Next PDF



Exercice 1 Considérons un échantillon de n = 5 individus où chaque

Calculer les écarts types σj de chacune des variables. 4. Calculer la matrice Z des données centrées-réduites. 5. Calculer la matrice de variance-covariance Σ 



Exercices corrigés

2. En déduire les lois marginales de U et V . 3. Calculer les matrices de covariance de [X Y ]t et de [U V ]t 



Exercices Exercices

En général une matrice de variances-covariances inversible est la matrice d'un produit Les notations sont celles de l'exercice précédent. a) Pour quelle ...





Régression linéaire

vecteur aléatoire ˆβ ou matrice de variance-covariance



Corrigés des exercices

Exercice 4. Solution. 1 La matrice de variance-covariance est donnée par V =.. 0 01000 0





coefficient de corrélation Exercice 6 : Matrice de variance-covariance

Exercice 6 : Matrice de variance-covariance. En Matlab il y a une commande « cov » pour calculer la matrice de variance-covariance pour des réalisations des 



Sciences de gestion - Synthèse de cours exercices corrigés

.... . La matrice de variance et de covariance de u est : Σu = E(uui) =..... σ2. 1 σ12. ··· σ1m σ21 σ2. 2. ··· σ2m ... ... ... .



Se familiariser avec les bases/notations Exercice 1. Soient une

Donnez la matrice de variance–covariance des variables indicatrices 1{kœS}. k = yk



Master 1 BEM MQEM T. D. n II . LACP pratique. Exercice n 1. Ent

2) Calculer la covariance entre x1 et x1. Que représente cette quantité? Exercice n? 2 ... et V la matrice de variance-covariance. Après calculs :.



Exercice 1 Considérons un échantillon de n = 5 individus où chaque

Calculer les écarts types ?j de chacune des variables. 4. Calculer la matrice Z des données centrées-réduites. 5. Calculer la matrice de variance-covariance ? 



Exercices corrigés

Calculer la variance Var{X1} de X1 et la covariance Cov{X1X2} de (X1



Exercices et problèmes de statistique et probabilités

Corrigés des exercices . Chapitre 5 Estimateur sans biais de variance minimale . ... f) Matrice des variances-covariances. M(XY) =.



1 Matrice de covariance

Typiquement son espérance ou sa variance. Un estimateur de ? est une variable aléatoire ?? à valeurs dans Rd



Exercices

Les variances et les covariances sont toutes égales. ? La matrice de corrélation est de rang 2. ? L'angle entre deux variables vaut au maximum 2.



TD 1 : Se familiariser avec les bases/notations Exercice 1. Soient

Ce qui est logique puisque nous avons vu que le fi–estimateur était un estimateur sans biais ! Exercice 3. Soit la matrice de variance–covariance. = (k¸)k¸ des 



Corrigés des exercices

Corrigés des exercices Note : Dans la note de l'exercice 1.1 on a établi que P(X < x) = FX(x ... La matrice des variances-covariances est :.



PC 5 – Calcul de lois & Vecteurs gaussiens

20 mai 2019 Exercice 1. ... Le calcul du déterminant de la matrice jacobienne donne ... matrice de variance-covariance est donnée par. Var(U) = Var.



coefficient de corrélation Exercice 6 : Matrice de variance-covariance

Vos prévisions sont-elles vérifiées ? Exercice 6 : Matrice de variance-covariance. En Matlab il y a une commande « cov » pour calculer la 



[PDF] Exercice 1 Considérons un échantillon de n = 5 individus où chaque

Calculer la matrice de variance-covariance ? de Z et la matrice de corrélation R de X Commenter 6 Effectuer une décomposition spectrale de la matrice de 



[PDF] coefficient de corrélation Exercice 6 : Matrice de variance-covariance

Exercice 6 : Matrice de variance-covariance En Matlab il y a une commande « cov » pour calculer la matrice de variance-covariance pour des



[PDF] Exercices

La fiche donne des énoncés d'exercices d'algèbre et d'analyse des données En général une matrice de variances-covariances inversible est la matrice 



[PDF] Exercices corrigés - IMT Atlantique

Le lecteur trouvera ici les énoncés et corrigés des exercices proposés dans Calculer les matrices de covariance de [X Y ]t et de [U V ]t Solution



[PDF] Corrections des exercices - Pages personnelles Université Rennes 2

Exercice 5 1 (Questions de cours) A A C B Exercice 5 2 (Analyse de la covariance) Nous avons pour le modèle complet la matrice suivante : X =



[PDF] Leçon 14 Exercices corrigés

Leçon 14 Exercices corrigés L'objet de l'exercice est d'obtenir un bon encadrement de la dans R3 de matrice de covariance



[PDF] 1 Matrice de covariance - Mathématiques

Typiquement son espérance ou sa variance Un estimateur de ? est une variable aléatoire ?? à valeurs dans Rd qui dépend de X1 Xn Il est consistant 



[PDF] CORRIGÉ

CORRIGÉ TD 9 : Régression linéaire Exercice 1 : On reprend l'exemple des 5 Calculs effectués pour variances et covariance : Var(x) = µ(x2 ) ? µ(x)



[PDF] Synthèse de cours exercices corrigés - ACCUEIL

Sciences de gestion Synthèse de cours Exercices corrigés Économétrie Q où Ln est la matrice de variance et de covariance de u (?u = Ln)(3) et où Q 

  • Comment trouver la matrice des variances covariances ?

    D'ailleurs, la covariance d'une variable avec elle-même (autocovariance) est tout simplement la variance. Cov(X,X) = V(X). Donc, faisons un parallèle avec le théorème de König : la covariance est la moyenne du produit des valeurs de deux variables moins le produit des deux moyennes.
  • Comment montrer qu'une matrice est une matrice de covariance ?

    Propriétés de la matrice de covariance
    La matrice de covariance est symétrique ; ses éléments diagonaux sont les variances et les éléments extra-diagonaux sont les covariances des couples de variables. La matrice de covariance est semi-définie positive (ses valeurs propres sont positives ou nulles).
  • Comment Calculer COV ?

    On calcule Cov( ? X , ? Y ) = E( ? X ? Y ) ? E( ? X ) E( ? Y ) = ? ? E( X Y ) ? ? ? E( X ) E( Y ).
  • En termes simples, les deux termes mesurent la relation et la dépendance entre deux variables. “Covariance” = la direction de la relation linéaire entre les variables. La “corrélation”, en revanche, mesure à la fois la force et le sens de la relation linéaire entre deux variables.
Aleatoire { MAP 361 Ecole Polytechnique Salle PC 41

Lundi 20 mai 2019 Sebastien Gadat

PC 5 { Calcul de lois & Vecteurs gaussiens

Exercice 1.SoientXetYdeux variables aleatoires independantes gaussiennes centrees reduites. 1.

D eterminerla loi de X+Yp2

;XYp2 2.

D eterminerla loi de X=Y.

Solution.CommeXetYsont independantes, la loi de (X;Y) a une densite12ex2+y22 surR2. Soitg:R2!Rune fonction continue bornee. On applique la methode de la fonction muette en calculantEh gX+Yp2 ;XYp2 i E gX+Yp2 ;XYp2 =12Z R

2gx+yp2

;xyp2 e x2+y22 dxdy:

Or (x;y)2RR7!(x+yp2

;xyp2 )2RRest unC1-dieormorphisme de jacobien 1. Le changement de variableu=x+yp2 etv=xyp2 donnex=u+vp2 ety=uvp2 , de sorte que : E gX+Yp2 ;XYp2 =12Z R

2g(u;v)e(u+v)2+(uv)24

dudv 12Z R

2g(u;v)eu2+v22

dudv:

On en deduit que (

X+Yp2 ;XYp2 ) est a densite, de densite donnee par (u;v)7!12eu2+v22 . Ainsi, X+Yp2 ;XYp2 ) a la m^eme loi qu'un couple de deux variables aleatoires gaussiennes centrees reduites independantes. CommeXetYsont independantes, la loi de (X;Y) a une densite12ex2+y22 surR2. Soit g:R!Rune fonction continue bornee. On applique la methode de la fonction muette en calculantE[g(X=Y)] : E gXY =12Z R 2gxy e x2+y22 dxdy: Or (x;y)2RR7!(x=y;y)2RRest unC1-dieormorphisme de jacobieny1. En faisant le changement de variableu=x=yetv=y, de sorte quex=uvety=v, on a Z R 2gxy e x2+y22 dxdy=Z R 2gxy jyjey22 (x2y

2+1)jyj1dxdy

Z R

2g(u)jvjev22

(u2+1)dudv Z R g(u) Z R jvjev22 (u2+1)dv du = 2 Z R g(u)1u

2+ 1du:

1 Donc E gXY =1 Z R g(u)1u

2+ 1du;

ce qui signie que la loi deX=Yest la loi de Cauchy, c'est-a-dire la loi de densite ((1+x2))1 par rapport a la mesure de Lebesgue. Exercice 2.(Pale 2013) SoientXetYdeux variables aleatoires independantes de lois respec- tives (;) et (+ 1=2;), avec >0 et >0. On pose (V;W) = (pXY ; pY). Determiner la loi de (V;W).

On rappelle que la densite de la loi (a;) est

1(a)axa1ex1x>0;avec (a) =Z

1 0 za1ezdz: Solution.CommeXetYsont independantes, la loi de (X;Y) a pour densite (x;y)7! f X(x)fY(y), oufXetfYdesignent les densites deXetY. On utilise alors la methode de la fonction muette :

E[h(V;W)] =Eh

h(pXY ; pY)i Z R

2h(pxy;

py)f(X;Y)(x;y)dxdy Z R

2h(pxy;

py)fX(x)fY(y)dxdy

2+1=2()(+ 1=2)Z

]0;1[2h(pxy; py)(xy)1=2e(x+y)dxdypx On considere le changement de variablev=pxy;w=pyqui est unC1dieomorphisme de ]0;1[2dans lui-m^eme. Le calcul du determinant de la matrice jacobienne donne dvdw=dxdy4 px

Ainsi, avecy=w2etx=v2=w2,

E[h(V;W)] =42+1=2()(+ 1=2)Z

]0;1[2h(v;w)v21e(w2+v2w

2)dvdw:

Ainsi, (V;W) est a densite et sa densite est donnee par f (V;W)(v;w) =42+1=2()(+ 1=2)v21e(w2+v2w

2)1v>0;w>0:

Exercice 3.1.Soit ( X;Y) un couple de variables independantes de lois respectives (a;) et (b;). Determiner la loi jointe du vecteur aleatoire (U;V) ouU=X=YetV=X+Y. 2. Soien tZetSdes variables independantes de lois respectivesN(0;1) et2n. On appelle loi de Studentandegres de liberte la loi de la variableT=ZpS=n . Montrer que la densite deTest donnee surRpar t7!n+12 pnn2

1 +t2n

n+12 2 Solution.1.D'apr esle cours, Vsuit la loi Gamma (a+b;). En revanche, pour determiner la densite jointe de (U;V) on utilisera la methode de la fonction muette. Soith:R2!R2 une fonction continue, bornee. Notons que par independancef(X;Y)=fXfY. On a

E[h(U;V)] =Z

R 2hxy ;x+y f (X;Y)(x;y)d(x;y) a+b(a)(b)Z R 2+hxy ;x+y x a1yb1e(x+y)d(x;y): Faisons le changement de variables (u;v) =(x;y) := (x=y;x+y). La reciproque est

1(u;v) =uv1+u;v1+u

. Le JacobienJde1(u;v) vaut

J= det

v(1+u)2u1+u v(1+u)211+u! v(1 +u)3+uv(1 +u)3=v(1 +u)2:

On en deduit que

E[h(U;V)] =a+b(a)(b)Z

R

2h(u;v)uv1 +u

a1v1 +u b1 e vjvj(1 +u)21fuv1+u>0;v1+u>0gd(u;v) Z R

2h(u;v)a+b(a+b)va+b1ev1v>0

|{z} =fV(v)(a+b)(a)(b)u a1(1 +u)a+b1u>0 |{z} =fU(u)d(u;v): On observe queVsuit bien la loi Gamma (a+b;). La loi deUest dite loi beta prime de parametresaetb. En plus,UetVsont independantes, car la densite jointe se factorise. 2.

Soit h:R!Rune fonction continue, bornee. On a

E[h(T)] =Z

R 2h rn s z f

Z(z)fS(s)d(z;s)

Z R +Z R h rn s z1p2ez22 12 n2 n2 sn2 1es2 dzds:

Par le changement de variablet=pn

s zavecdz=ps n dt, on obtient

E[h(T)] =12

n+12 n2 p Zquotesdbs_dbs42.pdfusesText_42
[PDF] exercice microéconomie consommateur

[PDF] exercice aire et périmètre 3eme

[PDF] exercices corrigés arithmétique 3eme

[PDF] relations interspécifiques exercices

[PDF] relations interspécifiques exemples

[PDF] exercice sur les facteurs biotiques

[PDF] démontrer que deux triangles sont isométriques

[PDF] triangles isométriques démonstrations

[PDF] triangles isométriques exercices corrigés

[PDF] figures isométriques et semblables exercices

[PDF] triangles isométriques exercices corrigés 4ème

[PDF] figures isométriques exercices

[PDF] isométrie exercices corrigés

[PDF] exercices corrigés dioptre sphérique

[PDF] exercice sur le pluriel des noms composés