[PDF] Méthodes de géométrie dans lespace Déterminer une équation





Previous PDF Next PDF



Ensemble de points- Lieu de points Objectif

1 avr. 2014 Des points fixes sont donnés. M est un point du plan caractérisé par une relation r (géométrique analytique



APPLICATIONS DU PRODUIT SCALAIRE

Méthode : Déterminer un angle à l'aide du produit scalaire L'ensemble ? est le cercle de centre le point de coordonnées (1 ; 5) et de rayon 3.



Calcul vectoriel – Produit scalaire

Méthode. Calculer des produits scalaires. Sur la figure ci-contre ABCD est un rectangle tel que On appelle ? l'ensemble des points M du plan tels que.



Méthodes de géométrie dans lespace Déterminer une équation

Deux vecteurs sont orthogonaux si et seulement si leur produit scalaire est nul Déterminer l'ensemble des points M(x ;y ;z) de l'espace qui vérifient :.



PRODUIT SCALAIRE DANS LESPACE

Donc l'ensemble E est le plan passant par A et de vecteur normal . Exemple : Le plan d'équation cartésienne a pour vecteur normal . Méthode : Déterminer une 



5. Produit scalaire de deux vecteurs

b) Autre méthode basée sur le produit scalaire : la droite d peut être vue comme l'ensemble des points P(x



Cours doptimisation

Addition de POINTS ensemble possible mais on s'interdira de le faire. 1.2. Vecteurs : Norme et Produit scalaire. 1.2.1. La norme.



PRODUIT SCALAIRE DANS LESPACE

On en déduit que est le point du plan le plus proche du point . Méthode : Utiliser la projection orthogonale pour déterminer la distance d'un point à un 



PRODUIT SCALAIRE (Partie 2)

Méthode : Calculer un produit scalaire par projection Propriété : L'ensemble des points M vérifiant l'égalité &&&&&&?.



VECTEURS DROITES ET PLANS DE LESPACE

d passant par et de vecteur directeur {? est l'ensemble des points tels Méthode : Utiliser le produit scalaire pour démontrer une orthogonalité.



Produit scalaire – Fiche de cours

3 Lieux de points - Lignes de niveaux Résoudre une ligne de niveau de valeur le réel k consiste à caractériser l’ensemble des points M du plan tel que f(M)=k Exemple : ?AB??AM=100 2/2 Produit scalaire – Fiche de cours Mathématiques Première générale - Année scolaire 2019/2020 https://physique-et-maths



PRODUIT SCALAIRE ( dans le plan ) - Pierre Lux

PRODUIT SCALAIRE La notion de produit scalaire est apparue pour les besoins de la physique Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand Hermann Grassmann (1809 ; 1877) ci-contre Il fut baptisé produit scalaire par William Hamilton (1805 ; 1865) en 1853 I Définition et



PRODUIT SCALAIRE DANS L'ESPACE - maths et tiques

Définition : Soit un point A et une droite d de l’espace La projection orthogonale de A sur d est le point H appartenant à d tel que la droite (AH) soit perpendiculaire à la droite d 2) Projection orthogonale d’un point sur un plan Définition : Soit un point A et un plan P de l’espace



PRODUIT SCALAIRE ( dans le plan ) - Pierre Lux

Le produit scalaire de deux vecteurs est égal au produit de leurs normes par le cosinus de l’angle qu’ils forment où O A et B sont trois points du plan tels que ?u=?OA et ?v=?OB H est le projeté orthogonal de B sur (OA) d ?u??v=?OA??OB={OA×OH ?OA×OH si ?OA et ?OH sont de même sens



ème Maths Chapitre : Produit scalaire:Ensemble points ww

Produit scalaire 2 Correction: I) A/ MA MB 0 c’est le cercle de diamètre [AB] B/ AM AB 0 L’ensemble des points M est la droite perpendiculaire à (AB) passant par A C/ AM AB 24 Soit H le point de (AB) tel que AH AB 24 On a AH AB AM AB donc AH AB AM AB 0 donc AB AH AM ( ) 0 donc ABMH 0



Searches related to ensemble de points produit scalaire méthode PDF

Ces propriétés permettent d’effectuer des opérations sur le produit scalaire comme le produit et la somme de quantités algébriques C’est une sorte de distributivité Propriété : On a les propriétés suivantes : Q? et R sont colinéaires de même sens ? Q? R =? Q? ?×? R ?

Comment calculer le produit scalaire d’un vecteur ?

Le produit scalaire de deux vecteurs est égal au produit de leurs normes par le cosinus de l’angle qu’ils forment. où O , A et B sont trois points du plan tels que ?u=?OA et ?v=?OB . H est le projeté orthogonal de B sur (OA) d ?u??v=?OA??OB={OA×OH ?OA×OH si ?OAet ?OHsont de même sens si ?OAet ?OHsont de sens contraire

Qu'est-ce que le produit scalaire?

PRODUIT SCALAIRE La notion de produit scalaire est apparue pour les besoins de la physique. Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand Hermann Grassmann (1809 ; 1877), ci-contre. Il fut baptisé produit scalaire par William Hamilton(1805 ; 1865) en 1853.

Comment calculer le signe du produit scalaire ?

B ) REMARQUES - Signe du produit scalaire : On déduit facilement le signe du produit scalaire ?OA??OB suivant la nature de l’angle ^AOB. En effet les normes des deux vecteurs ?OA et ?OB sont positives . On en déduit donc que ?OA??OB est du signe de cos^AOB. 0?^AOB< ? 2 ^AOB=? 2 ? 2 0 ?OA??OB=0 ?OA??OB

Méthodes de géométrie dans l'espace

Déterminer une équation cartésienne de plan L'équation cartésienne d'un plan est du type ax + by + cz + d = 0 avec (a ;b ;c) les coordonnées d'un vecteur normal du plan . On procède en deux étapes : D'abord déterminer un vecteur normal au plan

Ensuite déterminer d .

Première étape : Déterminer un vecteur normal au plan (ABC)

Rappels :

Un vecteur est normal au plan s'il est orthogonal au plan Un vecteur est orthogonal à un plan si et seulement s'il est orthogonal à deux vecteurs sécants du plan Deux vecteurs sont orthogonaux si et seulement si leur produit scalaire est nul Si on a );;(zyxur et )';';'(zyxvr alors '''zzyyxxvu++=×rr Soit nr un vecteur normal de (ABC) alors 0=×ABnr et 0=×ACnr et 0=×CBnr Deux équations suffisent donc on garde par exemple 0=×ABnr et 0=×ACnr Ensuite , on détermine deux des coordonnées de nr en fonction de la troisième . On choisit une valeur pour cette variable et on en déduit les deux autres .

Exemple

Déterminer un vecteur normal de (ABC) avec A(0 ;2 ;3) , B(1 ;0 ;5) et C(1 ;1 ;0) .

On a : )2;2;1(-AB et )3;1;1(--AC

On pose nr(a ;b ;c) .

On a :

0 0 ACn ABnr r donc 03 022
cba cba 2 1 L L

En faisant 21LL- : 05=+-cb donc b = 5c

En faisant 221LL- : 08=+-ca donc a = 8c

Puisque tous les vecteurs normaux d'un même plan ont des coordonnées proportionnelles , on peut choisir la valeur qu'on veut pour c . Prenons c = 1 .

Alors nr(8 ;5 ;1)

Remarque :

Si on a des fractions , on essaie de choisir c pour ne plus avoir de fraction

Par exemple , si on avait eu :

cb ca 5 43
2 , on pouvait choisir c = 15 . Ainsi , a = 10 et b = 12 .

Deuxième étape : déterminer d

On a les coefficients devant x , y et z . Il manque donc d . Pour cela on remplace (x ;y ;z) par les coordonnées d'un point du plan et on résout l'équation pour trouver d

Exemple

En gardant l'exemple précédent , on a comme équation cartésienne du plan (ABC) :

058=+++dzyx

Il manque d

Du plan (ABC) , on connaît trois points : A , B et C On en choisit un , prenons C ( moins de risque d'erreur de calcul avec des 0 et des 1 ) Méthodes de géométrie dans l'espace 001518=++´+´d

On résout : d = - 13

L'équation de (ABC) est donc : 01358=-++zyx

Remarque 1 : si on avait pris A ou B , on trouvait le même d

032508=++´+´d donne d = - 13 avec A

050518=++´+´d donne d = - 13 avec B

Remarque 2 : les équations cartésiennes d'un même plan sont proportionnelles . C'est-à-dire

que l'équation 02621016=-++zyx est aussi une équation de (ABC) . En général , on essaie de les simplifier au maximum .

Des variantes

On peut demander l'équation cartésienne d'un plan sans donner trois points du plan . On en donnera un ( pour pouvoir calculer d) mais on donnera des indications qui permettent de trouver le vecteur normal par d'autres raisonnements . Pour cela , quelques règles à retenir ( on peut s'aider de schémas ) Deux plans parallèles ont le même vecteur normal ( à une constante près donc on peut prendre le même )

Deux plans orthogonaux ont des vecteurs normaux

orthogonaux Des plans sécants ont des vecteurs normaux non colinéaires ( leurs coordonnées ne sont pas proportionnelles) Si un plan contient une droite , il contient le vecteur directeur de cette droite . Si une droite est orthogonale à un plan , son vecteur directeur est le vecteur normal du plan . Ici , D est dans P , son vecteur ur est orthogonal à nr D' est orthogonale à P alors son vecteur 'ur est colinéaire ( on peut même considérer égal) à nr

Méthodes de géométrie dans l'espace

Exemple

Déterminer l'équation cartésienne du plan P parallèle au plan P' d'équation

01232=-+-zyx sachant que P passe par A(0 ;8 ;5)

Puisque P et P' sont parallèles , ils ont même vecteur normal . Le vecteur normal de P' est )3;1;2(-nr : celui de P aussi Donc une équation cartésienne de P est : 032=++-dzyx Puisque A appartient à P , on a : 053802=+´+-´d donc d = - 7

Et donc P : 0732=-+-zyx

Représentation paramétrique de droites

On a besoin du vecteur directeur de la droite et d'un point de la droite

On a alors :

Un point M(x ;y ;z) appartient à la droite D de vecteur directeur );;(cbauret qui passe par le point A()AAAzyx;; si et seulement si : kczz kbyy kaxx A A A avec k réel .

Cas classique

On détermine le vecteur directeur de la droite et on applique simplement la formule ci-dessus

Exemple

Déterminer une représentation paramétrique de (AB) avec A(1 ;2 ;3) et B(0 ;8,4) Commençons par déterminer un vecteur directeur de (AB) ; soyons simples ! )1;6;1(-AB La droite (AB) passe par A et B ( ce qu'on peut être simplistes quand même !)

On choisit un point : A par exemple

On applique la formule :

kkczz kkbyy kkaxx A A A 3 62
1 avec k réel .

Remarque :

Si on choisit B , on a une autre représentation paramétrique de la même droite . '4 '68 kz ky kx avec k' réel En fait , ce qui change pour les points , c'est le " k » . Avec la première qu'on a trouvé , le point A correspond à k = 0 Avec la deuxième : le point A correspond à k' = -1

Des variantes

Comme précédemment , on peut donner des indications autres que deux points pour trouver le vecteur directeur de la droite . Deux droites orthogonales ont des vecteurs directeurs orthogonaux ; leurs vecteurs normaux sont orthogonaux ; on peut aussi dire que le vecteur directeur de l'une est le vecteur normal de l'autre . Deux droites parallèles ont le même vecteur directeur et le même vecteur normal .

Méthodes de géométrie dans l'espace

Retrouver la représentation paramétrique à partir de deux équations de plans

Rappels :

L'intersection de deux plans est soit vide , soit un plan , soit une droite Deux plans sont sécants si leurs vecteurs normaux ne sont pas colinéaires Autrement dit , quand on a les équations cartésiennes de deux plans , on peut chercher leur intersection . Si c'est une droite , alors on doit pouvoir retrouver la représentation paramétrique de cette droite à partir des deux équations de plans . Pour cela , on utilise les combinaisons linéaires pour exprimer deux variables en fonction de la troisième .

Exemple

Soient P : 02573=+-+zyx et P' : 0432=-+-zyx

On veut déterminer la représentation paramétrique de la droite intersection de ces deux plans

Commençons par vérifier que ces deux plans sont bien sécants : On a )5;7;3(-nr vecteur normal de P et )1;3;2('-nr vecteur normal de P' . Les coordonnées de ces deux vecteurs ne sont pas proportionnelles ( en effet : n'est pas un tableau de proportionnalité ) Les deux vecteurs normaux ne sont pas colinéaires et donc les plans sont sécants Déterminons maintenant la représentation paramétrique de la droite d'intersection

On considère le système :

0432
02573
zyx zyx 2 1 L L On utilise les combinaisons linéaires , comme si on cherchait à résoudre les système par

Gauss , par exemple :

2312LL- et 2713LL+:

016823

022823

zy zx ce qui donne zy zx 23
8 23
1623
8 23
22

On pose alors z = k et on a la représentation paramétrique de la droite intersection de P et P' :

kz ky kx 23
8 23
1623
8 23
22
avec k réel

Vecteur et point de cette droite

On peut ainsi en déduire un vecteur directeur de cette droite : ÷ø ae1;23 8;23

8ur ou puisque les

vecteurs directeurs sont tous colinéaires : ()23;8;8ur ; et un point de cette droite : ÷ø ae-0;23 16;23 22
et pas de simplification car les points ne sont pas " proportionnels » , eux !

3 7 - 5

2 - 3 1

Méthodes de géométrie dans l'espace

Equation cartésienne d'une sphère

L'équation cartésienne d'une sphère de centre A er de rayon R est : ()()()2222RzzyyxxAAA=-+-+-

On donne le rayon et le centre

Dans ce cas , on applique simplement la formule ci-dessus

Exemple

Déterminer une équation cartésienne d'une sphère de centre A(5 ;3 ;0) et de rayon 6 ()()()2222RzzyyxxAAA=-+-+- donne ()()()22226035=-+-+-zyx c'est-à-dire : ()()3635222=+-+-zyx On donne une équation et on veut retrouver centre et rayon Pour cela on utilise la forme canonique pour faire réapparaitre la formule de la définition

Exemple

Déterminer l'ensemble des points M(x ;y ;z) de l'espace qui vérifient :

010243²²²=+-+-++zyxzyx

On regroupe les termes " en famille » : 0102²4²3²=+-+++-zzyyxx

On sait que xx3²- est le début de

2 2

3÷ø

ae-x mais 4

93²2

3 2 ae-xxx

Donc xx3²- = 4

9 2 3 2 ae-x . On procède de même avec les y et avec les z , on obtient : ()()01011424 9 2 322
2 ae-zyx

Soit ()()04

19122
322
2 ae-zyx et donc ()()4 19122
322
2 ae-zyx On a donc l'équation cartésienne d'une sphère de centre A÷ø ae-1;2;2

3 et de rayon 2

19

Intersection d'une droite et d'un plan

On a besoin d'une équation cartésienne du plan et de la représentation paramétrique d'une

droite

On remplace dans l'équation du plan les x , y et z par ceux de la représentation paramétrique

de la droite , on détermine k .

Exemple

Déterminer le point d'intersection du plan P : 08432=-++zyx et de la droite D dont une représentation paramétrique est : kz ky kx 3 1 32
avec k réel On remplace dans l'équation de P : 08)3(4)1(3)32(2=-+++-+-kkk . On résout :

05=+k donc k = - 5 . On a donc :

253
651

17)5(32

z y x et le point d'intersection est

B(17 ;-6 ;-2) .

Méthodes de géométrie dans l'espace

Distance d'un point à une droite dans l'espace

Rappels :

Dans le plan : Soit d une droite d'équation ax + b + c = 0 et soit M(u,v) un point du plan : Alors la distance de M à d est donnée par ²²ba cbvau Dans l'espace : Soit P un plan de l'espace d'équation ax + by + cz + d = 0 et soit M(u,v,w) un point de l'espace . Alors la distance de M à P est donnée par

²²²cba

dcwbvau On a ces deux formules à notre disposition qui permettent de calculer des distances ; hélas aucune ne s'applique à cette situation !

On doit donc utiliser le projeté orthogonal .

Méthode : on cherche à déterminer la distance d'un point A à la droite D .

1) On détermine la représentation paramétrique de D .

2) On appelle H le projeté orthogonal de A sur D

3) Par définition , H est sur D donc les coordonnées de H vérifient la représentation

paramétrique de D .

4) Par définition , (AH) et D sont orthogonales donc on utilise le produit scalaire :

0=×uAHret on détermine k .

5) On calcule la longueur AH

Exemple

Déterminer la distance de A(2 ;3 ;1) à la droite D de représentation paramétrique : kz ky kx 23
32
1 avec k réel . Soit H(x ;y ;z) le projeté orthogonal de A sur D alors H est sur D et donc kz ky kx 23
32
1

A partir de la représentation paramétrique de D , on peut déterminer un vecteur directeur de

D : )2;3;1(--ur ; de plus )1;3;2(---zyxAH c'est-à-dire )123;332;21(---+---kkkAH et donc )22;35;1(kkkAH-+--- (AH) et D sont orthogonales donc 0=×uAHr donc : 0)22(2)35(3)1(1=--+-+---kkk

Ce qui donne : 01418=+-k donc 7

9 14 18==k

On a donc )7

922;7
935;7

91(´-´+---AH donc ÷ø

ae---7 4;7 8;7 16AH

Calculons maintenant AH = 7

842
7 336
7 4 7 8 7 16 222
ae+÷ø ae+÷ø ae

La distance de A à D est donc 7

842 .
quotesdbs_dbs22.pdfusesText_28